Rozdíly

Zde můžete vidět rozdíly mezi vybranou verzí a aktuální verzí dané stránky.

Odkaz na výstup diff

courses:a4m33bia [2013/05/29 19:42]
mnicky
courses:a4m33bia [2025/01/03 18:23] (aktuální)
Řádek 25: Řádek 25:
 Skripta Doc. Snorka Skripta Doc. Snorka
 http://​www.uloz.to/​xW51TGT/​neurony-kniha-zip http://​www.uloz.to/​xW51TGT/​neurony-kniha-zip
 +
 +====Test v semestru 2016: ====
 +{{:​courses:​img_3243.png?​direct&​100|}}
 +{{:​courses:​img_3244.png?​direct&​100|}}
 +{{:​courses:​img_3245.png?​direct&​100|}}
  
 ====Test v semestru 2012: ==== ====Test v semestru 2012: ====
Řádek 32: Řádek 37:
 A: A:
 1) krouzkovaci GA jsou -> pravdepodobnostni,​ nejspis najdou v rozumnem case slusny vysledek 1) krouzkovaci GA jsou -> pravdepodobnostni,​ nejspis najdou v rozumnem case slusny vysledek
-2) nakreslit minimální RBF síť schopnou naučit se XOR+2) nakreslit minimální RBF síť schopnou naučit se XOR (reseni: http://​i.imgur.com/​hoT76Sv.png)
 3) jak se počítá topologická chyba v SOM 3) jak se počítá topologická chyba v SOM
 4) NN popis, co co znamena ve vzorecku 4) NN popis, co co znamena ve vzorecku
Řádek 42: Řádek 47:
  
 (na stiahnutie tuna: http://​uloz.to/​xAgovEPD/​test-varianta2012-a-pdf) (na stiahnutie tuna: http://​uloz.to/​xAgovEPD/​test-varianta2012-a-pdf)
- 
 ====Test v semestru 2011: ==== ====Test v semestru 2011: ====
  
Řádek 64: Řádek 68:
  
 </​code>​ </​code>​
 +
  
 ===== Zkouška ===== ===== Zkouška =====
Řádek 117: Řádek 122:
 5. NSGA 5. NSGA
 6. C-metrika 6. C-metrika
 +</​code>​
 +
 +==== 2013, 2. termin ====
 +<​code>​
 +1. zadana je synchronni rekurznivni NN + vahy spojeni, vyjadrit vystupy rovnicemi a spocitat vystupy v case 1 a 2
 +2. GNARL
 +3. MIA GMDH
 +4. popsat RBF neuron - co vyjadruje + rovnice a obrazek
 +5. napsat rovnici energie site pouzivanou pocas backpropagation
 +6. SPEA 2
 +7. zadan bod v prostoru, urcit kde v prostoru lezi reseni dominujici, dominovana a nedominovana
 +8. popsat rovnici pravdepodobnosti vyberu cesty v Ant Colony Optimization + kdy se pouziva
 +9. memory based immigrants scheme
 +10. linear scaling + zakreslit do grafu
 +</​code>​
 +
 +==== 2014, 2. termin ====
 +
 +<​code>​
 +B:
 +1. Sammon'​s projection - what is it used for, write the equation
 +2. GMDH MIA - write the architecture,​ ...
 +3. Echo State network
 +4. NEAT - structural mutations, selection, benefits of complexification
 +5. indirect gene encoding, use in hyperNEAT
 +6. NSGA2 / SPEA2 - how is the density information used
 +7. Roulette wheel - solve example (same as above), write expected values and actual value range
 +8. C-metric - advantages, disadvantages,​ draw some example
 +9. Discrete PSO - position, velocity vectors; describe velocity change when Vmax is used
 +10. Memory-based immigration scheme
 +</​code>​
 +
 +==== 2015, 1. 6. ====
 +
 +<​code>​
 +varianta A:
 +1. RBF (4p)
 +2. Mutation and crossover in neuro-evolution. (3p)
 +3. What dataset preprocessing approaches do you know? Give a short explanation for each. (3p)
 +4. HyperNEAT (4p)
 +5. GMDH MIA (3p)
 +6. Relation between PCA and autoencoders. How would you learn Stacked Auto-Encoder?​ (3p)
 +7. Multi-Objective optimization ​ (4p)
 +  * Domination
 +  * Describe two goals of multi-objective optimization. Two desired properties of final set of solutions.
 +  * Draw Pareto-optimal set
 +  * Draw first 4 non-dominated fronts
 +8. ACOR  (4p)
 +9. Linear scaling + draw a graph. ​ (4p)
 +10. SPEA2 - describe fitness assignment scheme. (3p)
 +  * Strength value
 +  * Raw fitness
 +  * Density information
 +11. Dynamic Optimizations - GARB  (3p)
 +  * Redundant represenatation
 +  * Gene-strength adaption
 +12.Describe Strongly-Typed Genetic Programming. ​ (2p)
 +</​code>​
 +
 +==== 2016, 2. 6. ====
 +
 +<​code>​
 +Explain/​define/​describe: ​
 +a) k fold crossvalidation
 +b) BPTT
 +c) NEAT
 +d) CNN
 +e) Domanation in MOO
 +f) Memory-based Approaches: Explicit Memory
 +g) Evolution scheme in NSGA II
 +h) Diffecential evolution – donor vector + crossvalidation
 +i) Velocity in PSO
 +j)      Linear scaling (use graph)
 +Draw 4 pareto-optimal front into graph (min-max objectives)
 +Competing Conventions Problem - i inputs, h hidden neurons, o outputs. # of symetries?
 +Only neurons with linear activation function. Write equation for ANN with single hidden layer.
 +</​code>​
 +
 +
 +==== 2016, 16. 6. ====
 +
 +<​code>​
 +1. Self-Organizing Maps (SOM) [3 pts]
 +• Explain SOM network architecture and learning.
 +• Draw the SOM for 2D input and 5x5 grid of neurons.
 +
 +2. Recurrent Neural Netowrk (RNN) [3 pts]
 +• Describe fully-connected RNN architecture.
 +• Describe evaluation and learning of RNN.
 +• What is synchronous/​asynchronous network evaluation?
 +
 +3. Neuro-evolution [3 pts]
 +• Discuss mutation and crossover in neuro-evolution.
 +
 +4. Hypercube-based NeuroEvolution of Augmenting Topologies (HyperNEAT) [4 pts]
 +• Describe HyperNEAT algorithm.
 +• What is the difference between HyperNEAT and standard evolution of ANNs?
 +
 +5. Overfitting [4 pts]
 +• How can you prevent overfitting of artificial neural network?
 +
 +6. Perceptron vs Radial Basis Function (RBF) type neurons [3 pts]
 +• Describe differences between perceptron and RBF neurons.
 +• Draw an illustrative picture of how they divide an input space.
 +
 +7. EAs for Multi-Objective Optimizations [4 pts]
 +• Write a definition of domination.
 +• Describe two goals of the multi-objective optimization. What are the two desired properties of the final set of solutions?
 +
 +• Lets assume a set of all feasible solution in the left figure below. Draw a complete Pareto-optimal set in the figure given the minimization objective o1 and minimization objective o2.
 +• Lets assume the set of candidate solutions in the right figure. Draw the first four fronts of non-dominated solutions given the minimization objective o1 and minimization objective o2.
 +{ two pictures, first figure - space, second figure - points }
 +
 +8. Ant Colony Optimization for Continuous Domain (ACOr) [3 pts]
 +• Describe the ACOr algorithm
 +• Describe the way the Gaussian kernel probabilty density function (PDF) is used to model the pheromone.
 +• Describe how the Gaussian kernel PDF is modelled and how its parameters are estimated.
 +
 +9. Roulette Wheel [4 pts]
 +• Describe the roulette wheel selection method.
 +• Given a population of 5 individuals with the following fitness value - fitness(A)=1,​ fitness(B)=2,​ fitness(C)=3,​ fitness(D)=5,​ fitness(E)=9 - determine an expected number of copies that solution A and E recieve among ten solutions samples using a roulette wheel selection method. What is the range of the actual number of copies of A and E out of the ten samples solutions?
 +
 +10. Dynamic Optimizations [3 pts]
 +• Desribe the principles of the GA with Real-coded Binary Representation (GARB).
 +• Redundant representaion
 +• Gene-strength adaptation
 +
 +11. Ant Colony Optmimization (ACO) [3 pts]
 +• Describe the following formula used for probabilistic decision making in ACO algorithm. How is it used in ACO algorithm?
 +• Explain a meaning of the symbols Tau, Eta, alpha, beta, tabuk.
 +
 +{ p_ij^k = ... formula }
 +
 +12. Performance Metrics for Multi-Objective Optimizations [3 pts]
 +• Describe the S metric (i.e. the size of the space covered) used to assess a quality of a set of non-dominated solutions.
 +• What are its advantages and disadvantages?​
 +• Illustrate it on an example.
 </​code>​ </​code>​
  
 ~~DISCUSSION~~ ~~DISCUSSION~~
courses/a4m33bia.1369849358.txt.gz · Poslední úprava: 2025/01/03 18:14 (upraveno mimo DokuWiki)
Nahoru
chimeric.de = chi`s home Valid CSS Driven by DokuWiki do yourself a favour and use a real browser - get firefox!! Recent changes RSS feed Valid XHTML 1.0