Zde můžete vidět rozdíly mezi vybranou verzí a aktuální verzí dané stránky.
courses:a4m33bia [2013/05/31 16:13] mnicky |
courses:a4m33bia [2025/01/03 18:23] (aktuální) |
||
---|---|---|---|
Řádek 25: | Řádek 25: | ||
Skripta Doc. Snorka | Skripta Doc. Snorka | ||
http://www.uloz.to/xW51TGT/neurony-kniha-zip | http://www.uloz.to/xW51TGT/neurony-kniha-zip | ||
+ | |||
+ | ====Test v semestru 2016: ==== | ||
+ | {{:courses:img_3243.png?direct&100|}} | ||
+ | {{:courses:img_3244.png?direct&100|}} | ||
+ | {{:courses:img_3245.png?direct&100|}} | ||
====Test v semestru 2012: ==== | ====Test v semestru 2012: ==== | ||
Řádek 42: | Řádek 47: | ||
(na stiahnutie tuna: http://uloz.to/xAgovEPD/test-varianta2012-a-pdf) | (na stiahnutie tuna: http://uloz.to/xAgovEPD/test-varianta2012-a-pdf) | ||
- | |||
====Test v semestru 2011: ==== | ====Test v semestru 2011: ==== | ||
Řádek 64: | Řádek 68: | ||
</code> | </code> | ||
+ | |||
===== Zkouška ===== | ===== Zkouška ===== | ||
Řádek 131: | Řádek 136: | ||
9. memory based immigrants scheme | 9. memory based immigrants scheme | ||
10. linear scaling + zakreslit do grafu | 10. linear scaling + zakreslit do grafu | ||
+ | </code> | ||
+ | |||
+ | ==== 2014, 2. termin ==== | ||
+ | |||
+ | <code> | ||
+ | B: | ||
+ | 1. Sammon's projection - what is it used for, write the equation | ||
+ | 2. GMDH MIA - write the architecture, ... | ||
+ | 3. Echo State network | ||
+ | 4. NEAT - structural mutations, selection, benefits of complexification | ||
+ | 5. indirect gene encoding, use in hyperNEAT | ||
+ | 6. NSGA2 / SPEA2 - how is the density information used | ||
+ | 7. Roulette wheel - solve example (same as above), write expected values and actual value range | ||
+ | 8. C-metric - advantages, disadvantages, draw some example | ||
+ | 9. Discrete PSO - position, velocity vectors; describe velocity change when Vmax is used | ||
+ | 10. Memory-based immigration scheme | ||
+ | </code> | ||
+ | |||
+ | ==== 2015, 1. 6. ==== | ||
+ | |||
+ | <code> | ||
+ | varianta A: | ||
+ | 1. RBF (4p) | ||
+ | 2. Mutation and crossover in neuro-evolution. (3p) | ||
+ | 3. What dataset preprocessing approaches do you know? Give a short explanation for each. (3p) | ||
+ | 4. HyperNEAT (4p) | ||
+ | 5. GMDH MIA (3p) | ||
+ | 6. Relation between PCA and autoencoders. How would you learn Stacked Auto-Encoder? (3p) | ||
+ | 7. Multi-Objective optimization (4p) | ||
+ | * Domination | ||
+ | * Describe two goals of multi-objective optimization. Two desired properties of final set of solutions. | ||
+ | * Draw Pareto-optimal set | ||
+ | * Draw first 4 non-dominated fronts | ||
+ | 8. ACOR (4p) | ||
+ | 9. Linear scaling + draw a graph. (4p) | ||
+ | 10. SPEA2 - describe fitness assignment scheme. (3p) | ||
+ | * Strength value | ||
+ | * Raw fitness | ||
+ | * Density information | ||
+ | 11. Dynamic Optimizations - GARB (3p) | ||
+ | * Redundant represenatation | ||
+ | * Gene-strength adaption | ||
+ | 12.Describe Strongly-Typed Genetic Programming. (2p) | ||
+ | </code> | ||
+ | |||
+ | ==== 2016, 2. 6. ==== | ||
+ | |||
+ | <code> | ||
+ | Explain/define/describe: | ||
+ | a) k fold crossvalidation | ||
+ | b) BPTT | ||
+ | c) NEAT | ||
+ | d) CNN | ||
+ | e) Domanation in MOO | ||
+ | f) Memory-based Approaches: Explicit Memory | ||
+ | g) Evolution scheme in NSGA II | ||
+ | h) Diffecential evolution – donor vector + crossvalidation | ||
+ | i) Velocity in PSO | ||
+ | j) Linear scaling (use graph) | ||
+ | Draw 4 pareto-optimal front into graph (min-max objectives) | ||
+ | Competing Conventions Problem - i inputs, h hidden neurons, o outputs. # of symetries? | ||
+ | Only neurons with linear activation function. Write equation for ANN with single hidden layer. | ||
+ | </code> | ||
+ | |||
+ | |||
+ | ==== 2016, 16. 6. ==== | ||
+ | |||
+ | <code> | ||
+ | 1. Self-Organizing Maps (SOM) [3 pts] | ||
+ | • Explain SOM network architecture and learning. | ||
+ | • Draw the SOM for 2D input and 5x5 grid of neurons. | ||
+ | |||
+ | 2. Recurrent Neural Netowrk (RNN) [3 pts] | ||
+ | • Describe fully-connected RNN architecture. | ||
+ | • Describe evaluation and learning of RNN. | ||
+ | • What is synchronous/asynchronous network evaluation? | ||
+ | |||
+ | 3. Neuro-evolution [3 pts] | ||
+ | • Discuss mutation and crossover in neuro-evolution. | ||
+ | |||
+ | 4. Hypercube-based NeuroEvolution of Augmenting Topologies (HyperNEAT) [4 pts] | ||
+ | • Describe HyperNEAT algorithm. | ||
+ | • What is the difference between HyperNEAT and standard evolution of ANNs? | ||
+ | |||
+ | 5. Overfitting [4 pts] | ||
+ | • How can you prevent overfitting of artificial neural network? | ||
+ | |||
+ | 6. Perceptron vs Radial Basis Function (RBF) type neurons [3 pts] | ||
+ | • Describe differences between perceptron and RBF neurons. | ||
+ | • Draw an illustrative picture of how they divide an input space. | ||
+ | |||
+ | 7. EAs for Multi-Objective Optimizations [4 pts] | ||
+ | • Write a definition of domination. | ||
+ | • Describe two goals of the multi-objective optimization. What are the two desired properties of the final set of solutions? | ||
+ | |||
+ | • Lets assume a set of all feasible solution in the left figure below. Draw a complete Pareto-optimal set in the figure given the minimization objective o1 and minimization objective o2. | ||
+ | • Lets assume the set of candidate solutions in the right figure. Draw the first four fronts of non-dominated solutions given the minimization objective o1 and minimization objective o2. | ||
+ | { two pictures, first figure - space, second figure - points } | ||
+ | |||
+ | 8. Ant Colony Optimization for Continuous Domain (ACOr) [3 pts] | ||
+ | • Describe the ACOr algorithm | ||
+ | • Describe the way the Gaussian kernel probabilty density function (PDF) is used to model the pheromone. | ||
+ | • Describe how the Gaussian kernel PDF is modelled and how its parameters are estimated. | ||
+ | |||
+ | 9. Roulette Wheel [4 pts] | ||
+ | • Describe the roulette wheel selection method. | ||
+ | • Given a population of 5 individuals with the following fitness value - fitness(A)=1, fitness(B)=2, fitness(C)=3, fitness(D)=5, fitness(E)=9 - determine an expected number of copies that solution A and E recieve among ten solutions samples using a roulette wheel selection method. What is the range of the actual number of copies of A and E out of the ten samples solutions? | ||
+ | |||
+ | 10. Dynamic Optimizations [3 pts] | ||
+ | • Desribe the principles of the GA with Real-coded Binary Representation (GARB). | ||
+ | • Redundant representaion | ||
+ | • Gene-strength adaptation | ||
+ | |||
+ | 11. Ant Colony Optmimization (ACO) [3 pts] | ||
+ | • Describe the following formula used for probabilistic decision making in ACO algorithm. How is it used in ACO algorithm? | ||
+ | • Explain a meaning of the symbols Tau, Eta, alpha, beta, tabuk. | ||
+ | |||
+ | { p_ij^k = ... formula } | ||
+ | |||
+ | 12. Performance Metrics for Multi-Objective Optimizations [3 pts] | ||
+ | • Describe the S metric (i.e. the size of the space covered) used to assess a quality of a set of non-dominated solutions. | ||
+ | • What are its advantages and disadvantages? | ||
+ | • Illustrate it on an example. | ||
</code> | </code> | ||
~~DISCUSSION~~ | ~~DISCUSSION~~ |