Obsah

Statistické strojové učení

Cvičení

Zkouška

27.1.2017

FIXME doplňte prosím zbytek příkladů

Helpful materials

Literature

https://web.stanford.edu/~hastie/Papers/ESLII.pdf

Majority of SSU subjects understandably explained here: http://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning/understanding-machine-learning-theory-algorithms.pdf

SVM

Lecture on SVM on MIT https://www.youtube.com/watch?v=_PwhiWxHK8o

MIT notes: https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-034-artificial-intelligence-fall-2010/tutorials/MIT6_034F10_tutor05.pdf

https://www.youtube.com/watch?v=IOetFPgsMUc + pokracovanie v part II. a III.

Neural nets + convolutional

https://www.youtube.com/watch?v=vT1JzLTH4G4&list=PL3FW7Lu3i5JvHM8ljYj-zLfQRF3EO8sYv Whole course on neural nets and convolutional networks. Very comprehensive lectures, explained from the basic concepts plus nice motivation examples.

MLE

First what is likely hood? VYD lecture slides (course on FEL,CTU) https://www.youtube.com/watch?v=2vh98ful3_M

EM + gaussian mixture

https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-867-machine-learning-fall-2006/lecture-notes/lec15.pdf

Bayes learning

MIT notes: https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-034-artificial-intelligence-fall-2010/tutorials/MIT6_034F10_tutor06.pdf

GMB http://blog.kaggle.com/2017/01/23/a-kaggle-master-explains-gradient-boosting/