Toto je starší verze dokumentu!
Literature
https://web.stanford.edu/~hastie/Papers/ESLII.pdf
Majority of SSU subjects understandably explained here: http://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning/understanding-machine-learning-theory-algorithms.pdf
SVM Lecture on SVM on MIT https://www.youtube.com/watch?v=_PwhiWxHK8o MIT notes: https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-034-artificial-intelligence-fall-2010/tutorials/MIT6_034F10_tutor05.pdf
https://www.youtube.com/watch?v=IOetFPgsMUc + pokracovanie v part II. a III.
Neural nets + convolutional
https://www.youtube.com/watch?v=vT1JzLTH4G4&list=PL3FW7Lu3i5JvHM8ljYj-zLfQRF3EO8sYv Whole course on neural nets and convolutional networks. Very comprehensive lectures, explained from the basic concepts plus nice motivation examples.
MLE
First what is likely hood? VYD lecture slides (course on FEL,CTU) https://www.youtube.com/watch?v=2vh98ful3_M EM + gaussian mixture MIT notes for same topic. But it is useful to understand MLE first. https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-867-machine-learning-fall-2006/lecture-notes/lec15.pdf
Bayes learning
GMB http://blog.kaggle.com/2017/01/23/a-kaggle-master-explains-gradient-boosting/