
Applying Lagrangian relaxation to the Traveling

Salesman Problem

Matěj Jirka

Thursday 12:45

Open Informatics - Computer engineering

jirkamat@fel.cvut.cz

Abstract—This electronic document describes application of Lagrangian relaxation to the Traveling Salesman Problem. It contains

also algorithm details and results of nontrivial data on input.

I. ASSIGNMENT

A. Problem Statement

Traveling Salesman Problem is difficult discrete optimization problem. The problem can be described as follows. A

Salesman wants to visit number of cities and return to his home but he is old and lazy so he has to find the shortest path through

the cities and visit each city only once. The Salesman has a map and he also knows all distances between cities so he can decide

which path is the shortest but as the number of cities increases this becomes difficult.

Lagrangian relaxation is an approximation of difficult problem by relaxation method to simpler problem. In some cases we

can get optimal solution of the relaxed problem. General idea of LR is to divide problem constrains into two sets “hard”

constrains and “easy” constrains. It is common to get rid of “hard” constrains and put them into objective function (heuristic),

assigned with weights (the Lagrangian multiplier). Each weight (penalty) is added to solution that does not satisfy the particular

constraint.

B. Problem Categorization

The Traveling Salesman Problem is an NP-hard problem. Instead of solving NP-hard problem we apply Lagrange relaxation

and solve relaxation of TSP.

II. RELATED WORKS

Each one of us ever solved Traveling Salesman Problem. Maybe we do not perceive it but it is true. It is solved by many

companies, factories and organizations. Solution of this problem helps us to save kilometers, fuel, money, energy and many other

resources. But the way to the optimal solution is long and difficult as the number of constrains increases. Therefore compulsion to

speed up and simplify solving of this problem is high. It's not easy at all.

The easiest TSP solver implementation goes through all options and selects the optimal one. It is also the most unwanted

one. Better is to use a heuristic to solve TSP [3]. By using heuristics we reduce state space. But it is not guaranteed that we obtain

the optimal solution. On the other hand it provides solution many times faster.[5]

One way to get good solution is also through genetic algorithms. Genetic algorithms bases on trial-and-error procedure.

It tries to crossover and mutate generation by generation and select candidates from each generation to be representative in next

generation. Solving TSP by genetic algorithms approximate to one solution.[2]

III. PROBLEM SOLUTION

A. Design

I will solve TSP by Lagrangian relaxation and formulated as an integer linear programme. TSP can be formulated:

Minimize:

𝑧 = ∑ 𝑐(𝑒)𝑥𝑒𝑒∈𝐸
Subject to:

1. ∑ 𝑥𝑒𝑒 entering 𝑣 = 1 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑣 ∈ 𝑉

2. ∑ 𝑥𝑒𝑒 leaving 𝑣 = 1 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑣 ∈ 𝑉

3. 𝑢𝑣 𝑠𝑟𝑐 − 𝑢𝑣 𝑑𝑠𝑡 + |𝑉| ∗ 𝑥𝑒 ≤ |𝑉| − 1 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑣𝑑𝑠𝑡 ≠ 𝑣𝑠𝑟𝑐 ∈ 𝑉

4. 𝑥𝑒 ∈ {0,1} 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑒 ∈ 𝐸

First condition provides solution with only one entering edge to every node. Second condition is similar to the first one. It

provides solution with only one leaving edge from every node. So every node has exactly two edges, one for enter and one for

leave. But that is not all. We want solution with exactly one cycle. And this ensures the third condition. We can say that ui and uj

are timestamps. For each pair of adjacent nodes is true that source node has timestamp one less than destination node. Last

condition says that xe is binary indicator if edge e is selected to solution.

Therefore the third condition is hard to preserve we can remove it but we have to add penalization to solution. Reformulated

by Lagrangian relaxation to:

Minimize:

𝑍𝐿𝐿𝐵𝑃 = ∑ 𝑐(𝑒)𝑥𝑒 + 𝜇(𝑢𝑣 𝑠𝑟𝑐 − 𝑢𝑣 𝑑𝑠𝑡 + |𝑉| ∗ 𝑥𝑒 − (|𝑉| − 1))𝑒∈𝐸 it is equivalent to 𝑐𝑥 + 𝜇(𝐴𝑥 − 𝑏)

Subject to:

1. ∑ 𝑥𝑒𝑒 entering 𝑣 = 1 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑣 ∈ 𝑉

2. ∑ 𝑥𝑒𝑒 leaving 𝑣 = 1 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑣 ∈ 𝑉

3. 𝑥𝑒 ∈ {0,1} 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑒 ∈ 𝐸

Now we have only three simple conditions and we can solve TSP. There is only one problem. How to find vector 𝜇? Vector 𝜇

is 𝜇 ∈ ℝ≥0
𝑚𝐴positive vector. Its components are called Lagrangian multipliers. Next step is to find vector 𝜇∗, that produce the best

greatest lower bound(ZLLBP) of z. This finding is called Lagrangian Dual. To find this vector we can use Subgradient method[4]:

1. Set 𝜇, 𝑘 to 0, 𝜋 = 2

2. Compute 𝑍𝐿𝐿𝐵𝑃(𝜇𝑘) and a vector 𝑥𝑘 ∈ 𝑋

3. Compute subgradients 𝛿 = 𝑏 − 𝐴𝑥

4. Compute step size ∆ =
𝜋(𝑂𝑟𝑖𝑔𝑃𝑟𝑜𝑏𝑙𝑒𝑚𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛−𝑍𝐿𝐿𝐵𝑃)

∑ 𝛿𝑖
2

1≤𝑖≤𝑚𝐴

5. Update Lagrangian mult. 𝜇𝑖 = max(0, 𝜇𝑖 + ∆ ∗ 𝛿𝑖) ∀1 ≤ 𝑖 ≤ 𝑚𝐴

6. Remember best lower bound

7. Reduce agility(𝜋)

8. If 𝜋 is too small (Beasly suggests 0.005) or best lower bound achieved finish else repeat from 2.

B. Implementation

To solve TSP with Lagrangian relaxation I used Matlab with TORSCHE Scheduling Toolbox. I implemented function

TSPLagrange(gSize,kIter) with two parameters. Where gSize is number of nodes in automatically generated graph

and kIter is number of iteration of subgradient method.

1. First step is to calculate Euclidean distances between nodes and preserve them in vector c.
2. Assemble other matrices for ILP of original problem of TSP

a. Add conditions 1-3 to matrix A

b. Set vector b

i. For conditions 1 and 2 set value 1

ii. For conditions 3 set value gSize -1

c. Set lower bounds and upper bounds

3. Compute original TSP problem

4. Cut off condition 3 from all matrices of original problem

5. Iterate over subgradient method as described earlier

6. Plot graph of path and graph of evolution of optimal solutions

IV. EXPERIMENTAL RESULTS

A. Benchmark Settings

All tests were run on CPU i7-3630QM, 8.00 GB RAM and 64-bit Windows7. Version of Matlab was R2014b. I run

TSPLagrange function with increasing number of graph size and number of iterations and track all results.

B. Results

Tested on different number of nodes and iterations.

Nodes iterations time[s] Original solution Lagrange solution Difference Poznámky

5 50 3.147837 23.004304 22.108754 0.89555

5 50 3.389138 18.876999 18.506146 0.370853

5 100 4.721281 12.755604 12.424479 0.331125

5 100 4.973687 20.080491 18.577188 1.503303

5 250 4.317002 14.798264 13.832138 0.966126

5 250 3.467993 15.61923 15.61923 0 Nalezeno optimální řešení

10 50 6.800718 120.286391 118.931728 1.354663

10 50 7.528951 101.580177 99.561196 2.018981

10 100 9.336933 107.970136 104.575488 3.394648

10 100 10.03316 92.914749 89.585447 3.329302

10 250 14.13531 102.756157 92.949819 9.806338

10 250 14.80829 88.760703 80.625188 8.135515

15 100 16.54413 232.787932 219.987467 12.800465

15 100 17.7281 262.4769 258.484705 3.992195

15 250 22.91515 307.6104 301.376743 6.233657

15 250 24.1367 306.0797 305.343146 0.736554

15 500 17.20099 303.583283 302.235717 1.347566

15 500 17.93661 269.975004 264.886606 5.088398

15 1000 33.55561 304.688059 296.377575 8.310484

15 1000 33.03645 250.268649 239.071346 11.197303

As we can see Lagrangian relaxation can also find the best solution. But there are good results in whole spectrum of tests.

Average difference between Lagrangian and Original solution is 4.0906513 (5.8%).

There is graph composition on next pictures.

This graph has three strongly connected components. It is normal result because we removed one-cycle-condition. On the next

graph it can be seen the worse result we can obtain from lagrangian relaxation with removed one-cycle-condition.

The solution made pairs but all conditions are fulfilled.

There is evolution of optimal solution on next graphs.

PIC EVO 1

PIC EVO 2

C. Discussion

All the results I obtain seem to be valid. I removed one-cycle-condition so the graph is not connected but all nodes have one

leaving edge and one entering edge. Minimal cycle in graph has therefore two nodes.

Evolution of Lagrange solutions is also expected. There is no rule that solution has to converge to the best result of original

problem. But I think that the oscillation of results is pretty impressible by Subgradient agility.

V. CONCLUSION

I deal with TSP problem and Lagrangian relaxation applied to it. It is well known problem with high time complexity. I find out

that we can get feasible solution with breaking one or more conditions of TSP problem. It may not be only TSP it can be almost

every formulated ILP problem. But there is also chance that we can get really bad results.

REFERENCES

[1] Frédéric Giroire, F. H. (2012). Linear programming and combinatorial optimization. Získáno 15. March 2015, z ENS de

Lyon: http://www.ens-lyon.fr/DI/wp-content/uploads/2012/01/LagrangianRelax.pdf

[2] Kylie Bryant, A. B. (December 2000). Genetic Algorithms and the Traveling Salesman Problem. Získáno 23. March

2015, z Harvey Mudd College Department of Mathematics:

https://www.math.hmc.edu/seniorthesis/archives/2001/kbryant/kbryant-2001-thesis.pdf

[3] Nasini, S. (nedatováno). The Travelling Salesman Problem: Introductory notes and computational analysis. Získáno 20.

March 2015, z Departament d'Estadística i Investigació Operativa: http://www-eio.upc.es/~nasini/Blog/TSP_Notes.pdf

[4] Putz, P. (October 2007). https://www.ac.tuwien.ac.at/files/pub/putz-07.pdf. Získáno 4. May 2015, z Algorithms and

complexity group: https://www.ac.tuwien.ac.at/files/pub/putz-07.pdf

[5] S. Lin, W. K. (15. October 1971). Získáno 23. March 2015, z UCMERCED University of California, MERCED:

https://eng.ucmerced.edu/people/yzhang/papers/Heuristic/Lin_Kernighan

[6] Timsjö, S. (1999, JUne 15). An Application of Lagrangian Relaxation to the Traveling Salesman Problem. Retrieved

March 19, 2015, from CiteSeerX:

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.31.843&rep=rep1&type=pdf

