13 14

17 18

Inverse Kinematics for Computer Animation

Roman Berka http://vyuka.iim.cz/a4m39mma:a4m39mma

How to make them moving?

Motivation

Why we solve the problem of IK?

• analytic solution is often impossible

13 14

15 16

17 18

- too much solutions (large solution space)
- no solution (empty solution space)
- we need a numeric solution (can be expensive)
- we are looking for a robust and fast solution.

- 1. IK problem specification
- 2. Jacobian inversion method
- 3. Jacobian transposition method
- 4. Cyclic Coordinate Descent method
- 5. Comparison

13 14

15 16

17 18

The Articulated Structure

Q3

Joint Basic Types

revolute joint (q_i)

prismatic joint (d_i)

Any other types:

- can be more complex
- \bullet can be modeled as combination of 1DOF joints

DH Notation

 a_{i-1}

 a_i

 θ_{i}

Z;

 d_i

Link

X

2 1 Denavit-Hartenberg (1955!) 3 4 5 6 Link_{i-1} 7 8 9 10 z_{i-1} 11 12 13 14 Link α_{i-1} 15 16 17 18 x_{i-1} 19 20 21 22 23 24 link twist - α_{i-1} , link length - a_{i-1} , 25 26 link offset - d_i , joint angle - Θ_i 27

13 14

15 16

17 18

19 20

- let Θ be a configuration expressed in state space using both q_i and d_i e.g. $\Theta = (\theta_1, \theta_2, \theta_3, \dots, \theta_n)$ for revolute joints.
- \bullet and X is position of the end effector expressed in Cartesian space.
- X is expressed with 3DOF(position) or 6DOF (position + orientation).
- Then the relation between Θ and X is given as:

$$X = f(\Theta)$$

Representation of the function \boldsymbol{f}

What is the function f?

- each link L_i is positioned in coordinates of its predecessor L_{i-1} .
- the coordinate system of link L_i is denoted as frame $\{i\}$.
- the transformation between frames is given by four parameters: α_i , a_i , d_i , and Θ_i .

Representation of the function \boldsymbol{f}

≁,≠,∓,∓,∓ + *⁺* DCGI

then the relation between frames $\{i\}$ and $\{i-1\}$ is given by concatenation of four transformations:

$${}^{i-1}T_i = \left[\begin{array}{cc} R(\Theta_i)^z & 0\\ 0 & 1 \end{array} \right] \cdot \left[\begin{array}{cc} 0 & 0\\ (0,0,d_i) & 1 \end{array} \right].$$

$$\begin{bmatrix} 1 & 0 \\ (a_{i-1}, 0, 0) & 1 \end{bmatrix} \cdot \begin{bmatrix} R(\alpha_{i-1})^x & 0 \\ 0 & 1 \end{bmatrix}$$

Representation of the function \boldsymbol{f}

13 14

15 16

17 18

21 22

$$^{i}x_{i}$$
 viewed from the frame $\{i-1\}$ is then expressed as:

$${}^{i-1}x_i = {}^i x_i \cdot {}^{i-1}T_i$$

DCG

• ...and ${}^{i}x_{i}$ viewed from the frame $\{0\}$ is then expressed as:

$$^{0}x_{i} =^{i} x_{i} \cdot ^{0}T_{i} =^{i} x_{i} \cdot \prod_{j=i}^{1} {}^{j-1}T_{j}$$

•
$$X = f(\Theta) \longleftrightarrow X = ({}^{i}x_{i} . \prod_{j=n}^{1} {}^{j-1}T_{j})(\Theta)$$

Closer to Inverse Kinematics

11 12

13 14

15 16

17 18

19 20

- forward kinematics $X = f(\Theta) = (f_1(\Theta), f_2(\Theta), \dots, f_6(\Theta))$
- The linear approximations can be given using the $6 \times n$ matrix Jacobian

$$J(\Theta) = \begin{bmatrix} \frac{\partial f_i}{\partial q_j} \end{bmatrix} = \begin{bmatrix} \frac{\partial f_1}{\partial q_1} & \cdots & \frac{\partial f_1}{\partial q_n} \\ \vdots & \cdots & \vdots \\ \frac{\partial f_6}{\partial q_1} & \cdots & \frac{\partial f_6}{\partial q_n} \end{bmatrix}$$

• the partial derivatives must be evaluated in a small surrounding of Θ to match local linear approximation of f^{-1} .

The Jacobian

3 4 • $f(\hat{\Theta}) + [J(\hat{\Theta})](\Theta - \hat{\Theta})$ is the 1^{st} order Taylor 5 6 approximation of f at $\hat{\Theta}^1$. 7 8 • The Jacobian tell us how position 9 10 of EE changes when tuning parts of Θ . 11 12 13 14 • $\Delta X = J(\Theta) \Delta \Theta \Rightarrow$ $\Rightarrow \Delta \Theta = J^{-1}(\Theta) \Delta X$ 15 16 17 18 19 20 21 22 23 24

1

25

27

26

$$f^{1}f(x) = \sum_{i=0}^{n} \frac{f^{(i)}(a)}{i!} (x-a)^{i} + R_{n}$$

The Jacobian Construction

≁,≠,∓,∓,∓, ≁ DCGI

Now, the problem is to compute the Jacobian. Let's go to extract necessary information from transformation matrices!

1

3

5

7

9

2

4

6

8

10

11 12

13 14

15 16

17 18

19 20

21 22

23 24

25 26

27

{2

- All we need is to express velocities (linear v and angular ω) of EE in global space (frame $\{0\}$) based on local parameters of links.
- we can write $\mathbf{v}_{i,0} = \omega_{i,i-1} \times (\mathbf{P}_n \mathbf{P}_i)$
- in fact, the cross product originates from

$$\Omega = \begin{pmatrix} 0 & -\omega_z & \omega_y \\ \omega_z & 0 & -\omega_x \\ -\omega_y & \omega_x & 0 \end{pmatrix} \text{ and }$$
$$\Omega.(\mathbf{P}_n - \mathbf{P}_i) \equiv (\omega_x, \omega_y, \omega_z) \times (\mathbf{P}_n - \mathbf{P}_i)$$

- then the resulting linear velocity is $\mathbf{v}_{n,0} = \sum_{i=1}^{n-1} \omega_{i,i-1} \times (\mathbf{P}_n \mathbf{P}_i)$
- the angular velocity of EE is optional $\omega_{n,0} = \mathbf{P}_{n,0} imes \mathbf{v}_{n,0}$

\

2

- expression of \mathbf{P}_i and in frame $\{0\}$ we can obtain as $P_{i,0} = (0,0,0,1).{}^0T_i$ which is the fourth row of 0T_i
- for $\omega_{i,0}$ we need just only transformed rotational axis $a_{zi} = (0, 0, 1, 1).^0 T_i$ which is just first three elements of third row of 0T_i

Finally we can construct Jacobian so that one column i looks like:

DCG

$$J_{i}(\Theta) = \begin{bmatrix} \left[\mathbf{axis}_{zi} \times (\mathbf{P}_{n} - \mathbf{P}_{i}) \right]^{T} \\ \left[\mathbf{axis}_{zi} \right]^{T} \end{bmatrix} = \begin{bmatrix} \mathbf{b}_{zi} \\ \mathbf{a}_{zi} \end{bmatrix}$$

where ${}^{0}T_{i} = \begin{bmatrix} \mathbf{axis}_{xi} & 0 \\ \mathbf{axis}_{yi} & 0 \\ \mathbf{axis}_{zi} & 0 \\ \mathbf{P}_{i} & 1 \end{bmatrix}$

The Jacobian Construction

The final equation:

$$\begin{bmatrix} \mathbf{v}_{n,0} \\ \omega_{n,0} \end{bmatrix} = \begin{bmatrix} \mathbf{b}_{z1} & \dots & \mathbf{b}_{zi} & \dots & \mathbf{b}_{zn-1} \\ \mathbf{a}_{z1} & \dots & \mathbf{a}_{zi} & \dots & \mathbf{a}_{zn-1} \end{bmatrix} \begin{bmatrix} \Delta q_1 \\ \dots \\ \Delta q_i \\ \dots \\ \Delta q_{n-1} \end{bmatrix}$$

DCG

- Now we need to solve $\Delta \Theta = J^{-1}(\Theta) \Delta X$.
- The J is typically non-invertible because DOFs for EE (3 or 6) and for whole chain are usually different.
- How to invert it?

13 14

15 16

17 18

19 20

21 22

• Using generalized pseudo-inverse J^+ which gives an unique solution and has the following properties:

•
$$JJ^+J = J$$
 $J^+JJ^+ = J^+$

•
$$(J^+J)^T = J^+J$$
 $(JJ^+)^T = JJ^+$

Iteration

- the solution based on J^+ is possible source of errors
- $dX = X_{goal} X$ may exceed any threshold value.
- iteration is needed.

2

4

6

8

10

11 12

13 14

15 16

17 18

19 20

21 22

25 26

24

23

27

1

3

5

7

- so we minimize $Err = ||J^+(\Theta)\Delta\Theta X_{goal}||$
- so if $Err > \varepsilon$ we compute $X_i = \frac{X + X_{goal}}{2}$ and iterate first over interval X, X_i .

- avoids inversion of Jacobian
- is based on the idea of virtual works $Work = force \times distance$ $Work = torque \times angle$

• so
$$F.\Delta X = \tau.\Delta \Theta$$
 or $F^T.\Delta X = \tau^T.\Delta \Theta$

3

5

7

9

2

4

6

8

10

11 12

13 14

15 16

17 18

19 20

21 22

23 24

25 26

- \bullet we know $\Delta X = J.\Delta \Theta$
- thus $F^T.J\Delta\Theta=\tau^T.\Delta\Theta$
- then $F^T.J=\tau^T\Rightarrow J^T.F=\tau$

 $\tau = J^T . F \longrightarrow \Delta \Theta = J^T . \Delta X$ wirt. force equation $\longrightarrow compare with formal equation$

- we use the distance $||X_{goal} X||$ as a Force that pulls the EE.
- using a scaling factor λ we can iterate $\Delta \Theta^{(i+1)} = \lambda J^T. \Delta X^{(i)}$
- λ can be interpreted as a time-step Δt

2

4

6

8

10

11 12

13 14

15 16

17 18

19 20

21 22

25 26

24

23

27

1

3

5

7

Cyclic Coordinate Descent Method

Jacobian inversion

1

3

5

7

9

11

2

4

6

8

10

12

13 14

15 16

17 18

19 20

21 22

23 24

26

25

- $+ \ J^+$ gives solutions having minimal form in each step
- + faster converge then ${\cal J}^{{\cal T}}$
 - singularities of ${\boldsymbol J}$
 - complicated implementation
- Jacobian Transpose
 - + cheaper evaluation
 - + no singularities
 - scaling problem

Comparing the Three Methods

• CCD

13 14

15 16

17 18

25 26

- + no singularities
- + cheap evaluation
- + simple to implement
 - does not necessary lead to smooth solution
 - can give odd solution when deltas in step are not limited

- IK solvers usually part of a modeling software (usually commercial)
- e.g. Alias Maya open C++ architecture

3

5

7

9

11

2

4

6

8

10

12

13 14

15 16

17 18

19 20

22

24

25 26

21

23

- Internet resources sometimes free code can be found
 - $\bullet \ Java3D-http://www.brockeng.com/VMech/IK/IKSG.htm$
 - Java applet http://www.nbb.cornell.edu/neurobio/land/OldStudentProjects/ cs490-96to97/hoffman/
 - Example in Processing http://www.openprocessing.org/visuals/?visualID=12368

13 14

15 16

17 18

- H. Watt, A. and M. Watt. *Advanced Animation and Rendering Techniques*. Addison Wesley, 1992.
- K. W. Chin. Closed-Form and Generalized Inverse Kinematic Solutions for Animating the Human Articulated Structure. Technical report, Curtin University of Technology, 1996.
- C. Welman. Inverse Kinematics and Geometric Constraints for Articulated Figure Manipulation. Master's thesis, Simon Fraser University, September 1993.
- J. J. Craig. Adaptive Control of Mechanical Manipulators. Addison-Wesley, 1988. ISBN 0-201-10-490-3.