
Dept. of Computer Graphics and Interaction, FEE
CTU in Prague, Czech Republic

1 2

3 4

5 6

7 8

9 10

11 12

13 14

15 16

17 18

19 20

21 22

23 24

25 26

27

Inverse Kinematics for Computer Animation

Roman Berka

http://vyuka.iim.cz/a4m39mma:a4m39mma

How to make them moving?

http://www.cgg.cvut.cz
http://vyuka.iim.cz/a4m39mma:a4m39mma

Motivation

1 2

3 4

5 6

7 8

9 10

11 12

13 14

15 16

17 18

19 20

21 22

23 24

25 26

27

Why we solve the problem of IK?

analytic solution is often impossible

too much solutions (large solution space)

no solution (empty solution space)

we need a numeric solution (can be expensive)

we are looking for a robust and fast solution.

http://www.cgg.cvut.cz

Talk Overview

1 2

3 4

5 6

7 8

9 10

11 12

13 14

15 16

17 18

19 20

21 22

23 24

25 26

27

1. IK problem specification

2. Jacobian inversion method

3. Jacobian transposition method

4. Cyclic Coordinate Descent method

5. Comparison

http://www.cgg.cvut.cz

The Articulated Structure

1 2

3 4

5 6

7 8

9 10

11 12

13 14

15 16

17 18

19 20

21 22

23 24

25 26

27

Rigid parts (links) connected with joints

We will assume some limits:

constant size of each link.

base of whole structure is located in O[0,0,0]

open kinematics chain only (e.g. a human arm without loops)

http://www.cgg.cvut.cz

Joint Basic Types

1 2

3 4

5 6

7 8

9 10

11 12

13 14

15 16

17 18

19 20

21 22

23 24

25 26

27

revolute joint (qi) prismatic joint (di)

Any other types:

can be more complex

can be modeled as combination of 1DOF joints

http://www.cgg.cvut.cz

DH Notation

1 2

3 4

5 6

7 8

9 10

11 12

13 14

15 16

17 18

19 20

21 22

23 24

25 26

27

Denavit-Hartenberg (1955!)

link twist - αi−1, link length - ai−1,

link offset - di, joint angle - Θi

http://www.cgg.cvut.cz

Forward Kinematics

1 2

3 4

5 6

7 8

9 10

11 12

13 14

15 16

17 18

19 20

21 22

23 24

25 26

27

let Θ be a configuration expressed in state space using both

qi and di e.g. Θ = (θ1, θ2, θ3, . . . , θn) for revolute joints.

and X is position of the end effector expressed in Cartesian space.

X is expressed with 3DOF(position) or 6DOF (position +

orientation).

Then the relation between Θ and X is given as:

X = f(Θ)

http://www.cgg.cvut.cz

Representation of the function f

1 2

3 4

5 6

7 8

9 10

11 12

13 14

15 16

17 18

19 20

21 22

23 24

25 26

27

What is the funcion f?

each link Li is positioned in coordinates of its predecessor Li−1.

the coordinate system of link Li is denoted as frame {i}.

the transformation between frames is given by four parameters: αi,

ai, di, and Θi.

http://www.cgg.cvut.cz

Representation of the function f

1 2

3 4

5 6

7 8

9 10

11 12

13 14

15 16

17 18

19 20

21 22

23 24

25 26

27

then the relation between frames {i} and {i− 1} is given by

concatenation of four transformations:

i−1Ti =

[
R(Θi)

z 0

0 1

]
.

[
0 0

(0, 0, di) 1

]
.

.

[
1 0

(ai−1, 0, 0) 1

]
.

[
R(αi−1)

x 0

0 1

]

http://www.cgg.cvut.cz

Representation of the function f

1 2

3 4

5 6

7 8

9 10

11 12

13 14

15 16

17 18

19 20

21 22

23 24

25 26

27

ixi viewed from the frame {i− 1} is then expressed as:

i−1xi =i xi.
i−1Ti

...and ixi viewed from the frame {0} is then expressed as:

0xi =i xi.
0Ti =i xi.

1∏
j=i

j−1Tj

X = f(Θ)←→ X = (ixi.
∏1

j=n
j−1Tj)(Θ)

http://www.cgg.cvut.cz

Closer to Inverse Kinematics

1 2

3 4

5 6

7 8

9 10

11 12

13 14

15 16

17 18

19 20

21 22

23 24

25 26

27

Let’s go to opposite direction!

forward: configuration =⇒ EE position X = f(Θ)

inverse: EE position =⇒ configuration Θ = f−1(X)

What is f−1?

f is non-linear owing to cos and sin functions

we have to find any linear approximation for f−1

http://www.cgg.cvut.cz

Inverse Kinematics

1 2

3 4

5 6

7 8

9 10

11 12

13 14

15 16

17 18

19 20

21 22

23 24

25 26

27

forward kinematics X = f(Θ) = (f1(Θ), f2(Θ), . . . , f6(Θ))

The linear approximations can be given using the 6× n matrix

Jacobian

J(Θ) =

[
∂fi
∂qj

]
=


∂f1
∂q1

. . . ∂f1
∂qn

...
∂f6
∂q1

. . . ∂f6
∂qn


the partial derivatives must be evaluated in a small surrounding of

Θ to match local linear approximation of f−1.

http://www.cgg.cvut.cz

The Jacobian

1 2

3 4

5 6

7 8

9 10

11 12

13 14

15 16

17 18

19 20

21 22

23 24

25 26

27

f(Θ̂) + [J(Θ̂)](Θ − Θ̂) is the 1st order Taylor

approximation of f at Θ̂1.

The Jacobian tell us how position

of EE changes when tuning parts of Θ.

∆X = J(Θ)∆Θ⇒
⇒ ∆Θ = J−1(Θ)∆X

1f(x) =
∑n

i=0
f(i)(a)

i! (x − a)i + Rn

http://www.cgg.cvut.cz

The Jacobian Construction

1 2

3 4

5 6

7 8

9 10

11 12

13 14

15 16

17 18

19 20

21 22

23 24

25 26

27

Now, the problem is to compute

the Jacobian. Let’s go to

extract necessary information from

transformation matrices!

http://www.cgg.cvut.cz

The Jacobian Construction

1 2

3 4

5 6

7 8

9 10

11 12

13 14

15 16

17 18

19 20

21 22

23 24

25 26

27

All we need is to express velocities (linear v and angular ω) of EE

in global space (frame {0}) based on local parameters of links.

we can write vi,0 = ωi,i−1 × (Pn −Pi)

in fact, the cross product originates from

Ω =

 0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

 and

Ω.(Pn −Pi) ≡ (ωx, ωy, ωz)× (Pn −Pi)

then the resulting linear velocity is vn,0 =
∑n−1

i=1 ωi,i−1× (Pn−Pi)

the angular velocity of EE is optional - ωn,0 = Pn,0 × vn,0

http://www.cgg.cvut.cz

The Jacobian Construction

1 2

3 4

5 6

7 8

9 10

11 12

13 14

15 16

17 18

19 20

21 22

23 24

25 26

27

expression of Pi and in frame {0} we can obtain as

Pi,0 = (0, 0, 0, 1).0Ti which is the fourth row of 0Ti

for ωi,0 we need just only transformed rotational axis

azi = (0, 0, 1, 1).0Ti which is just first three elements

of third row of 0Ti

http://www.cgg.cvut.cz

The Jacobian Construction

1 2

3 4

5 6

7 8

9 10

11 12

13 14

15 16

17 18

19 20

21 22

23 24

25 26

27

Finally we can construct Jacobian so that one column i looks like:

Ji(Θ) =

[
[axiszi × (Pn −Pi)]

T

[axiszi]
T

]
=

[
bzi

azi

]

where 0Ti =


axisxi 0

axisyi 0

axiszi 0

Pi 1



http://www.cgg.cvut.cz

The Jacobian Construction

1 2

3 4

5 6

7 8

9 10

11 12

13 14

15 16

17 18

19 20

21 22

23 24

25 26

27

The final equation:

[
vn,0

ωn,0

]
=

[
bz1 . . . bzi . . . bzn−1

az1 . . . azi . . . azn−1

]


∆q1
. . .

∆qi
. . .

∆qn−1



http://www.cgg.cvut.cz

Jacobian Inversion

1 2

3 4

5 6

7 8

9 10

11 12

13 14

15 16

17 18

19 20

21 22

23 24

25 26

27

Now we need to solve ∆Θ = J−1(Θ)∆X.

The J is typically non-invertible because DOFs for EE (3 or 6) and

for whole chain are usually different.

How to invert it?

Using generalized pseudo-inverse J+ which gives an unique solution

and has the following properties:

JJ+J = J J+JJ+ = J+

(J+J)T = J+J (JJ+)T = JJ+

http://www.cgg.cvut.cz

Iteration

1 2

3 4

5 6

7 8

9 10

11 12

13 14

15 16

17 18

19 20

21 22

23 24

25 26

27

the solution based on J+ is possible source of errors

dX = Xgoal −X may exceed any threshold value.

iteration is needed.

so we minimize Err = ||J+(Θ)∆Θ−Xgoal||

so if Err > ε we compute Xi =
X+Xgoal

2 and iterate first over

interval X,Xi.

http://www.cgg.cvut.cz

Jacobian Transpose Method

1 2

3 4

5 6

7 8

9 10

11 12

13 14

15 16

17 18

19 20

21 22

23 24

25 26

27

avoids inversion of Jacobian

is based on the idea of virtual works

Work = force× distance Work = torque× angle

so F.∆X = τ.∆Θ

or FT .∆X = τT .∆Θ

we know ∆X = J.∆Θ

thus FT .J∆Θ = τT .∆Θ

then FT .J = τT ⇒ JT .F = τ

http://www.cgg.cvut.cz

Jacobian Transpose

1 2

3 4

5 6

7 8

9 10

11 12

13 14

15 16

17 18

19 20

21 22

23 24

25 26

27

τ = JT .F

virt. force equation
−→ ∆Θ = JT .∆X

compare with formal equation

we use the distance ||Xgoal −X|| as a Force that pulls the EE.

using a scaling factor λ we can iterate ∆Θ(i+1) = λJT .∆X(i)

λ can be interpreted as a time-step ∆t

http://www.cgg.cvut.cz

Cyclic Coordinate Descent Method

1 2

3 4

5 6

7 8

9 10

11 12

13 14

15 16

17 18

19 20

21 22

23 24

25 26

27

CCD

based on simple idea when changing only 1DOF per iteration

the main problem is to find the angle q

finding the q can be defined as maximization task

...because ∆X is minimized when g.r is maximized

http://www.cgg.cvut.cz

Comparing the Three Methods

1 2

3 4

5 6

7 8

9 10

11 12

13 14

15 16

17 18

19 20

21 22

23 24

25 26

27

Jacobian inversion

+ J+ gives solutions having minimal form in each step

+ faster converge then JT

- singularities of J

- complicated implementation

Jacobian Transpose

+ cheaper evaluation

+ no singularities

- scaling problem

http://www.cgg.cvut.cz

Comparing the Three Methods

1 2

3 4

5 6

7 8

9 10

11 12

13 14

15 16

17 18

19 20

21 22

23 24

25 26

27

CCD

+ no singularities

+ cheap evaluation

+ simple to implement

- does not necessary lead to smooth solution

- can give odd solution when deltas in step are not limited

http://www.cgg.cvut.cz

Some Useful Tools

1 2

3 4

5 6

7 8

9 10

11 12

13 14

15 16

17 18

19 20

21 22

23 24

25 26

27

IK solvers - usually part of a modeling software (usually

commercial)

e.g. Alias Maya - open C++ architecture

Internet resources - sometimes free code can be found

Java3D – http://www.brockeng.com/VMech/IK/IKSG.htm

Java applet – http://www.nbb.cornell.edu/neurobio/land/OldStudentProjects/

cs490-96to97/hoffman/

Example in Processing – http://www.openprocessing.org/visuals/?visualID=12368

http://www.cgg.cvut.cz

References

1 2

3 4

5 6

7 8

9 10

11 12

13 14

15 16

17 18

19 20

21 22

23 24

25 26

27

H. Watt, A. and M. Watt. Advanced Animation and Rendering Techniques. Addison Wesley,

1992.

K. W. Chin. Closed-Form and Generalized Inverse Kinematic Solutions for Animating the Human

Articulated Structure. Technical report, Curtin University of Technology, 1996.

C. Welman. Inverse Kinematics and Geometric Constraints for Articulated Figure Manipulation.

Master’s thesis, Simon Fraser University, September 1993.

J. J. Craig. Adaptive Control of Mechanical Manipulators. Addison-Wesley, 1988. ISBN

0-201-10-490-3.

http://www.cgg.cvut.cz

	First page
	Motivation
	Talk Overview
	The Articulated Structure
	Joint Basic Types
	DH Notation
	Forward Kinematics
	Representation of the function f
	Representation of the function f
	Representation of the function f
	Closer to Inverse Kinematics
	Inverse Kinematics
	The Jacobian
	The Jacobian Construction
	The Jacobian Construction
	The Jacobian Construction
	The Jacobian Construction
	The Jacobian Construction
	Jacobian Inversion
	Iteration
	Jacobian Transpose Method
	Jacobian Transpose
	Cyclic Coordinate Descent Method
	Comparing the Three Methods
	Comparing the Three Methods
	Some Useful Tools
	References
	Last page

