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Inverse Kinematics for Computer Animation

Roman Berka

http://vyuka.iim.cz/a4m39mma:a4m39mma

How to make them moving?

http://www.cgg.cvut.cz
http://vyuka.iim.cz/a4m39mma:a4m39mma


Motivation
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Why we solve the problem of IK?

analytic solution is often impossible

too much solutions (large solution space)

no solution (empty solution space)

we need a numeric solution (can be expensive)

we are looking for a robust and fast solution.

http://www.cgg.cvut.cz


Talk Overview
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1. IK problem specification

2. Jacobian inversion method

3. Jacobian transposition method

4. Cyclic Coordinate Descent method

5. Comparison
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The Articulated Structure
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Rigid parts (links) connected with joints

We will assume some limits:

constant size of each link.

base of whole structure is located in O[0,0,0]

open kinematics chain only (e.g. a human arm without loops)

http://www.cgg.cvut.cz


Joint Basic Types
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revolute joint (qi) prismatic joint (di)

Any other types:

can be more complex

can be modeled as combination of 1DOF joints
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DH Notation
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Denavit-Hartenberg (1955!)

link twist - αi−1, link length - ai−1,

link offset - di, joint angle - Θi
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Forward Kinematics
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let Θ be a configuration expressed in state space using both

qi and di e.g. Θ = (θ1, θ2, θ3, . . . , θn) for revolute joints.

and X is position of the end effector expressed in Cartesian space.

X is expressed with 3DOF(position) or 6DOF (position +

orientation).

Then the relation between Θ and X is given as:

X = f(Θ)
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Representation of the function f

1 2

3 4

5 6

7 8

9 10

11 12

13 14

15 16

17 18

19 20

21 22

23 24

25 26

27

What is the funcion f?

each link Li is positioned in coordinates of its predecessor Li−1.

the coordinate system of link Li is denoted as frame {i}.

the transformation between frames is given by four parameters: αi,

ai, di, and Θi.
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Representation of the function f
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then the relation between frames {i} and {i− 1} is given by

concatenation of four transformations:

i−1Ti =

[
R(Θi)

z 0

0 1

]
.

[
0 0

(0, 0, di) 1

]
.

.

[
1 0

(ai−1, 0, 0) 1

]
.

[
R(αi−1)

x 0

0 1

]
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Representation of the function f
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ixi viewed from the frame {i− 1} is then expressed as:

i−1xi =i xi.
i−1Ti

...and ixi viewed from the frame {0} is then expressed as:

0xi =i xi.
0Ti =i xi.

1∏
j=i

j−1Tj

X = f(Θ)←→ X = (ixi.
∏1

j=n
j−1Tj)(Θ)
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Closer to Inverse Kinematics
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Let’s go to opposite direction!

forward: configuration =⇒ EE position X = f(Θ)

inverse: EE position =⇒ configuration Θ = f−1(X)

What is f−1?

f is non-linear owing to cos and sin functions

we have to find any linear approximation for f−1
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Inverse Kinematics
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forward kinematics X = f(Θ) = (f1(Θ), f2(Θ), . . . , f6(Θ))

The linear approximations can be given using the 6× n matrix

Jacobian

J(Θ) =

[
∂fi
∂qj

]
=


∂f1
∂q1

. . . ∂f1
∂qn

... . . . ...
∂f6
∂q1

. . . ∂f6
∂qn


the partial derivatives must be evaluated in a small surrounding of

Θ to match local linear approximation of f−1.
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The Jacobian
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f(Θ̂) + [J(Θ̂)](Θ − Θ̂) is the 1st order Taylor

approximation of f at Θ̂1.

The Jacobian tell us how position

of EE changes when tuning parts of Θ.

∆X = J(Θ)∆Θ⇒
⇒ ∆Θ = J−1(Θ)∆X

1f(x) =
∑n

i=0
f(i)(a)

i! (x − a)i + Rn
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The Jacobian Construction
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Now, the problem is to compute

the Jacobian. Let’s go to

extract necessary information from

transformation matrices!
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The Jacobian Construction
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All we need is to express velocities (linear v and angular ω) of EE

in global space (frame {0}) based on local parameters of links.

we can write vi,0 = ωi,i−1 × (Pn −Pi)

in fact, the cross product originates from

Ω =

 0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

 and

Ω.(Pn −Pi) ≡ (ωx, ωy, ωz)× (Pn −Pi)

then the resulting linear velocity is vn,0 =
∑n−1

i=1 ωi,i−1× (Pn−Pi)

the angular velocity of EE is optional - ωn,0 = Pn,0 × vn,0
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The Jacobian Construction
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expression of Pi and in frame {0} we can obtain as

Pi,0 = (0, 0, 0, 1).0Ti which is the fourth row of 0Ti

for ωi,0 we need just only transformed rotational axis

azi = (0, 0, 1, 1).0Ti which is just first three elements

of third row of 0Ti
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The Jacobian Construction
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Finally we can construct Jacobian so that one column i looks like:

Ji(Θ) =

[
[axiszi × (Pn −Pi)]

T

[axiszi]
T

]
=

[
bzi

azi

]

where 0Ti =


axisxi 0

axisyi 0

axiszi 0

Pi 1


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The Jacobian Construction
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The final equation:

[
vn,0

ωn,0

]
=

[
bz1 . . . bzi . . . bzn−1

az1 . . . azi . . . azn−1

]


∆q1
. . .

∆qi
. . .

∆qn−1



http://www.cgg.cvut.cz


Jacobian Inversion
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Now we need to solve ∆Θ = J−1(Θ)∆X.

The J is typically non-invertible because DOFs for EE (3 or 6) and

for whole chain are usually different.

How to invert it?

Using generalized pseudo-inverse J+ which gives an unique solution

and has the following properties:

JJ+J = J J+JJ+ = J+

(J+J)T = J+J (JJ+)T = JJ+

http://www.cgg.cvut.cz


Iteration
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the solution based on J+ is possible source of errors

dX = Xgoal −X may exceed any threshold value.

iteration is needed.

so we minimize Err = ||J+(Θ)∆Θ−Xgoal||

so if Err > ε we compute Xi =
X+Xgoal

2 and iterate first over

interval X,Xi.
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Jacobian Transpose Method
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avoids inversion of Jacobian

is based on the idea of virtual works

Work = force× distance Work = torque× angle

so F.∆X = τ.∆Θ

or FT .∆X = τT .∆Θ

we know ∆X = J.∆Θ

thus FT .J∆Θ = τT .∆Θ

then FT .J = τT ⇒ JT .F = τ

http://www.cgg.cvut.cz


Jacobian Transpose
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τ = JT .F

virt. force equation
−→ ∆Θ = JT .∆X

compare with formal equation

we use the distance ||Xgoal −X|| as a Force that pulls the EE.

using a scaling factor λ we can iterate ∆Θ(i+1) = λJT .∆X(i)

λ can be interpreted as a time-step ∆t
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Cyclic Coordinate Descent Method
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CCD

based on simple idea when changing only 1DOF per iteration

the main problem is to find the angle q

finding the q can be defined as maximization task

...because ∆X is minimized when g.r is maximized
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Comparing the Three Methods
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Jacobian inversion

+ J+ gives solutions having minimal form in each step

+ faster converge then JT

- singularities of J

- complicated implementation

Jacobian Transpose

+ cheaper evaluation

+ no singularities

- scaling problem

http://www.cgg.cvut.cz


Comparing the Three Methods
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CCD

+ no singularities

+ cheap evaluation

+ simple to implement

- does not necessary lead to smooth solution

- can give odd solution when deltas in step are not limited
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Some Useful Tools
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IK solvers - usually part of a modeling software (usually

commercial)

e.g. Alias Maya - open C++ architecture

Internet resources - sometimes free code can be found

Java3D – http://www.brockeng.com/VMech/IK/IKSG.htm

Java applet – http://www.nbb.cornell.edu/neurobio/land/OldStudentProjects/

cs490-96to97/hoffman/

Example in Processing – http://www.openprocessing.org/visuals/?visualID=12368

http://www.cgg.cvut.cz
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