Dept. of Computer Graphics and Interaction, FEE CTU in Prague, Czech Republic

1	2

3 | 4

5 | 6

7 | 8

9 | 10

|1|12

13 14

15 | 16

17|18

19 20

21 | 22

23 24

25 26

What Power Makes them Moving

Roman Berka

http://vyuka.iim.cz/a4m39mma:a4m39mma

- 1. Particle systems
- 2. Rigid body dynamics
- 3. Motion balance of bi-peds

General Overview

1	2

- 3 4
- 5 | 6
- 7 | 8
- 9 10
- 11 | 12
- 13 14
- 15 16
- 17 18
- 19 20
- 21 | 22
- 23 24
- 25 26

Particle Systems

- using 3DOF or 6DOF elements instead of classical polygonal objects
- representation of "fuzzy" objects (fog, smoke, clouds, water)
- PS represent volume × polygons represent surface (border representation)
- PS is dynamic entity ⇒ develops during its life
- ullet object represented by PS has no predetermined shape o it is given by simulation

General Overview

1	
T	

3 4

5 | 6

7 | 8

9 10

11|12

13 | 14

15 16

17|18

19 20

21 | 22

23 24

+

26

Advantages & Disadvantages

+ a particle is simple \Rightarrow simple manipulation

+ PS is given by procedural definition \Rightarrow simpler realization of complex objects,

 $+ \Rightarrow$ possibility of automatic LOD

+ simpler representation of dynamic behavior

- complex objects \Rightarrow high computation cost

Where the particle will go at the nearest time?

10

24

• the second Newton's law acts to everybody:
$$\mathbf{F} = m \frac{d\mathbf{v}}{dt} = m \frac{d^2\mathbf{r}}{dt^2}$$

$$\mathbf{F} = m\frac{d\mathbf{v}}{dt} = m\frac{d^2\mathbf{r}}{dt^2}$$

$$\mathbf{r}(t) = \frac{1}{m} \int_{t_0}^t \int_{t_0}^t \mathbf{F}(t) dt dt$$

Particle Dynamics

10

13 14

15 16

18

19 20

21 22

24

26

What two particles think about each other?

• Newton's gravitation law: $F = \kappa \frac{M_1 M_2}{r^2}$

$$F = \kappa \frac{M_1 M_2}{r^2}$$

- This law acts between each two physical objects.
- The gravitational force belongs to weak forces in nature.

- 1 | 2
- 3 | 4
- 5 6
- 7 8
- 9 10
- 11 | 12
- 13 | 14
- 15 16
- 17 | 18
- 19 20
- 21 | 22
- 23 24
- 25 26

Which forces act on the system?

- 1. unary forces gravity, resistant forces of the particle environment
- 2. N-ary forces forces acting to fixed set of particles
- 3. spacial interaction forces attraction and repulsion forces, *oriented particles*

1 | 2

4

5 | 6

7 8

9 10

11|12

13 | 14

15 16

17 18

19 20

21 22

23 24

25 26

Unary Forces

gravitation force (mass)

$$G = mg$$

gravitational acceleration $\mathbf{g} = (0, -g, 0)$

resistant forces (viscous friction)

$$\mathbf{F} = -k_d \mathbf{v}$$

 k_d is coefficient of drag

- 1 | 2
- 3 | 4
- 5 | 6
- 7 8
- 9 10
- 11 12
- 13 14
- 15 16
- 17 18
- 19 20
- 21 | 22
- 23 24
- 25 2

N-ary Forces

• forces acting on pairs of particles, modeled by system of sprigs:

$$\mathbf{F}_a = -\mathbf{F}_b = -\left[k_s(|\mathbf{l}| - r) + k_d \frac{\mathbf{i}.\mathbf{l}}{|\mathbf{l}|}\right] \cdot \frac{\mathbf{l}}{|\mathbf{l}|} \begin{cases} \mathbf{l} = \mathbf{a} - \mathbf{b} \\ \mathbf{i} = \mathbf{v}_a - \mathbf{v}_b \end{cases}$$

- k_s is spring constant
- k_d is dumping constant
- r is rest length
- a and b are positions of particles

1 | 2

3 | 4

Spacial Interaction Forces

- forces acting on pairs or n-tuplets of particles
- used to simulate fluids, and large scale particle models
- \bullet force calculation $O(n^2) \Rightarrow$ disadvantage for large-scale spatial interaction
- potencial fields Lennard-Jones potential function

$$\mathbf{F}_{ij} = -\nabla_r \phi_{LJ}(|\mathbf{r}_{ij}|)$$

Example:

$$\phi_{LJ}(r_{ij}) = 4\varepsilon \left(\left(\frac{\sigma}{r} \right)^6 - \left(\frac{\sigma}{r} \right)^{12} \right) \quad \stackrel{\text{0.025 0.5}}{\text{0.25 0.5}}$$

Implementation of Simulation Core

1	2

3 | 4

5 | 6

7 | 8

9 10

11|12

13 | 14

15 16

17 18

19 20

21 | 22

23 24

25 26

How the Machine Works?

The simplest model can use shared memory \Rightarrow threaded architecture.

More complicated model represents distributed world \Rightarrow problem of synchronization

|--|

- 3 4
- 5 | 6
- 7 8
- 9 10
- 11 12
- 13 14
- 15 16
- 17 18
- 19 20
- 21 22
- 23 24
- 25 26

How They Can be Visualized?

- Light emitting method
- Polygonal object substitution
- Volume object substitution
- Implicit surface rendering

1	2

4

- 5 6
- 7 | 8
- 9 10
- 11 12
- 13 14
- 15 16
- 17 | 18
- 19 20
- 21 | 22
- 23 24
- 25 26

Light emitting method

- particle is displayed in therms of a point light source
- the particle shape, size and distance from an observer determines covered pixels
- no shadows, no depth-sorting is needed
- explosions, fire

1	2

- 3 4
- 5 | 6
- 7 8
- 9 10
- 11 | 12
- 13 14
- 15 16
- 17 | 18
- 19 20
- 21 22
- 23 24
- 25 26

Polygonal object substitution

- each particle is replaced by a polygonal object
- the object can vary in complexity from one polygon to whole mash
- flocks, herds

1	2

- 3 | 4
- 5 | 6
- 7 | 8
- 9 10
- 11 | 12
- 13 14
- 15 16
- 17 19
- 19 20
- 21 22
- 23 24
- 25 26

Volume object substitution

- similar to the previous approach
- a volume object substitutes the particles
- approximate comets, sparks, water droplets

1	2
_	

- 3 | 4
- 5 | 6
- 7 8
- 9 10
- 11 | 1
- 13 14
- **15 16**
- 17 | 18
- 19 20
- 21 | 22
- 23 24
- 25 26

Implicit Surface Rendering

- particles are replaced by sources of a potential field ⇒ blobby objects
- the implicit surface of an object is defined by superposition of all potential sources:

$$D_{blob}(r) = \sum_{i=0}^{n} B_i e^{-A_i r_i^2} = T,$$

where T is te equipotential which should be rendered, A and B are constants and r_i is a generalized distance to the potential source p_i :

$$r_i = \frac{|\mathbf{p} - \mathbf{p_i}|}{R_i},$$

where R_i is the threshold of distance where the potential value falls to zero.

≁≠∓∓∓ → DCGI

1 | 2

3 | 4

5 | 6

7 | 8

9 10

11 | 12

13 14

15 16

17|18

19 20

21 | 22

23 24

25 26

Implicit Surface Rendering

1 2

3 4

5 | 6

7 | 8

9 10

|1| |12

13 | 14

15 | 16

17 18

19 20

21 | 22

23 24

25 26

More Particles Together??

- a small part of a solid with constant mass $\mathbf{F}_i = m_i \frac{d^2 \mathbf{r}_i}{dt^2} = \frac{d^2 (m_i \mathbf{r}_i)}{dt^2}$
- the total force to the solid ${f F}=\sum_i {f F}_i=rac{d^2\sum_i(m_i{f r}_i)}{dt^2}$
- let's write ${\bf R}=\frac{\sum_i m_i {\bf r}_i}{M}$ where $M=\sum_i m_i$ then ${\bf F}=M\frac{d^2{\bf R}}{dt^2}$ (analogy to ${\bf F}=m{\bf a}$)

 \dots and what is \mathbf{R} ?

1 | 2

Let's rotate the solid in 2D

• there is an analogy between angular and linear velocity: $\omega = \frac{d\varphi}{dt} \sim \mathbf{v} = \frac{d\mathbf{r}}{dt}$

velocity:
$$\omega = \frac{1}{dt} \sim \mathbf{V} = \frac{1}{dt}$$

$$\Delta x = -\mathbf{P}\mathbf{Q}\sin\varphi = -r\Delta\varphi\frac{y}{r}$$

$$= -y\Delta\varphi$$

$$\Delta y = x\Delta\varphi$$

• the force performs the work:

$$\Delta W = F_x \Delta x + F_y \Delta y = \underbrace{(xF_y - yF_x)}_? \Delta \varphi$$

ullet the force making the solid to rotate o torque:

$$N_i = x_i F_{yi} - y_i F_{xi}$$
, $N = \sum_i N_i$, $\mathbf{N} = \mathbf{r} \times \mathbf{F}$

• if all forces acting to the solid are in equilibrium then total force is zero, total torque is zero and the solid is in equilibrium: $\Delta W = N\Delta \varphi = 0$

1	2

4

5 | 6

7 | 8

9 10

11 | 12

13 | 14

15 | 16

17 18

19 20

21 | 22

23 24

25 26

Example 1

- \bullet External forces F=(0,0,f) act at points x(t)+(-3,0,-2) and x(t)+(3,0,-2)
- the total force $\mathbf{F}=(0,0,2f)$ and $a=\frac{2f}{M}$
- the torgue due to the first force: $((x(t)+(-3,0,-2))-x(t))\times \mathbf{F}=(-3,0,-2)\times \mathbf{F}, \text{ analogically the torque due to the second force}$
- the total torque $\tau = (0,0,-2)\times(0,0,f) = \mathbf{0}$

1 | 2

4

5 | 6

7 | 8

9 10

11 | 12

13 | 14

15 | 16

17 | 18

19 20

21 | 22

23 24

25 26

Example 2

- External forces $F_1=(0,0,f)$ and $F_2=(0,0,-f)$ act at points x(t)+(-3,0,-2) and x(t)+(3,0,2)
- ullet the total force ${f F}={f F}_1+{f F}_2={f 0}$
- the torgue due to the first force: $((x(t) + (-3,0,-2)) x(t)) \times \mathbf{F_1} = (-3,0,-2) \times \mathbf{F_1},$ analogically the torque due to the second force
- the total torque $\tau = (0, 3f, 0) + (0, 3f, 0) = (0, 6f, 0)$

$1 \mid 2$

3 4

Angular Momentum (Moment of momentum)

• torque expressed using acceleration:

$$N = xF_y - yF_x = xm\frac{d^2y}{dt^2} - ym\frac{d^2x}{dt^2} = \frac{d}{dt}\left(\underbrace{xm\frac{dy}{dt} - ym\frac{dx}{dt}}_?\right)$$

- the angular momentum: $L = xm\frac{dy}{dt} ym\frac{dx}{dt}$
- the rate of change of angular momentum according to arbitrary axis equals to the total torque of external forces according to the same axis: $N = \sum_i N_i = N_{ext} = \frac{dL}{dt}$
- ullet the part of a solid has angular momentum: $L_i=m_iv_ir_i=m_ir_i^2\omega$
- the total angular momentum $L=I\omega$, where $I=\sum_i m_i r_i^2 \to$ moment of inertia

Moment of Inertia

• for solid object
$$I = \sum_i m_i (x_i^2 + y_i^2) = \int_i (x^2 + y^2) dm$$

- ullet the total moment of inetria for a solid is $I=\sum_i I_i$ according to the axis of rotation
- ullet moment of inetria according to an arbitrary axis $I=I_T+MR_T^2$

$$ullet$$
 ...but generally I is a matrix:

• ...but generally
$$I$$
 is a matrix: $\left(egin{array}{ccc} I_{xx} & I_{xy} & I_{xz} \\ I_{yx} & I_{yy} & I_{yz} \\ I_{zx} & I_{zy} & I_{zz} \end{array}
ight)
ightarrow inertia tensor$

- then $L_i = \sum_j I_{ij} \omega_j$
- motion equation for rotation is: $\mathbf{N} = I \frac{d^2 \varphi}{dt^2}, \varphi = (\varphi_x, \varphi_y, \varphi_z)$

Dynamics of the Bi-ped Walk

- moment point ZMP must be computed
- 23 24
- 26

Dynamics of the Bi-ped Walk

1 | 2

3 | 4

5 | 6

7 | 8

9 10

11|12

13 14

15 16

17|18

19 20

21 | 22

23 24

25 26

Zero Moment Point

- according to the law of conservation of moment of momentum: $\frac{d\mathbf{L}}{dt} = \sum_i \mathbf{N}_i$
- for the walking bi-ped both sides of the equation must be zero

•
$$\sum_{i}^{n} [\underbrace{(\mathbf{r}_{i} - P)}_{force\ arm} \times \underbrace{m_{i}(-\ddot{\mathbf{r}} + \mathbf{g})}_{force}] = 0$$

• solving the equation we will get solution in form $\mathbf{P}=(P_x,0,P_z)$

Dynamics of the Bi-ped Walk

1	2

3 | 4

5 | 6

7 | 8

9 10

11 | 12

13 | 14

15 16

17 18

19 20

21 22

23 24

25 26

Swing, swing, swing...

- then the test whether the ZMP lies in the supporting area is evaluated
- if not then the correction configuration vector $\Delta\Theta(t)$ of is computed...
- ...and added to the current configuration: $\Theta(t + \Delta t) = \Theta_0(t) + \Delta \Theta(t)$ [Ko and Badler(1996)]
- computing $\Delta\Theta(t)$ is the optimization task with goal to get minimal correction necessary to get ZMP lying in the supporting area [Tak et al.(2000)]

References

25 26

		DCC
1	2	 [Huang et al.(2001)] Q. Huang, K. Yokoi, S. Kajita, K. Kaneko, H. Arai, N. Koyachi, and K. Tanie. Planning Walking Patterns for a Biped Robot. <i>IEEE Transactions on Robotics and Automation</i>, 17(2):280–289, June 2001. [Tak et al.(2000)] S. Tak, O. Y. Song, and H. S. Ko. Motion Balance Filtering. In Sabine Coquillart and Jr. Duke, David, editors, <i>Proceedings of the 21th European Conference on Computer Graphics (Eurographics-00)</i>, volume 19, 3 of <i>Computer Graphics Forum</i>, pages 437–446, Cambridge, August 21–25 2000. Blackwell Publishers.
3	4	
5	6	
7	8	
9	10	
11	12	
13	14	[Ko and Badler(1996)] H. Ko and N. I. Badler. Animating Human Locomotion with Inverse Dynamics. <i>IEE Computer Graphics and Applications</i> , 16(2):50–59, March 1996.
15	16	
17	18	[Witkin(2001)] A. Witkin and David Baraff Physically Based Modeling - Differential Equation Basics. Siggraph 2001, Course Notes, C25 LA August 2001
19	20	
21	22	[Feynman(2000)] R. P. Feynman Feynman's Lectures on Physics. FRAGMENT 2000.
23	24	