
Sequence Assembly
But we can’t “read” off the sequence of an entire molecule all at once. But we do have the ability to read or
detect short pieces (substrings) of DNA

Key properties: length in bp/read, error rate in %, price in $ per 1 million of base pairs
* Sanger sequencing: 500-800 bp, 1%, $2400
* Next generation technologies: – 454 Genome Sequencer: 250-600 bp, 1%, $10

– Illumina Genome Analyzer: 35-150 bp, 1%, $0.15
* Oxford Nanopore: x10 kbp/read, up to 30% error rate, the most portable sequencer

Shotgun sequencing
Statistics for shotgun sequencing

Given: G – genome length (3.109 nts), L – read length (500 nts), N – number of reads (tbd)
Calculate: coverage – a=NL/G

– How many contigs are there? How big are they?

– How many reads are in each contig?

– How big are the gaps?

Requirement: 99% in contigs, 1% in gaps gives – a=4.6, N=3x107, mean contig length 104, 100 reads/contig avg

The fragment assembly problem
Given: A set of reads (strings) {s1, s2, …, sn}

Do: Determine a large string s that “best explains” the reads

What do we mean by “best explains”?

 Find a string s such that – all reads s1, s2, …, sn are substrings of s

– s is as short as possible

What assumptions might we require?

– Reads are 100% accurate

– Identical reads must come from the same location on the genome

– “best” = “simplest”

Example: Given the reads {ACG, CGA, CGC, CGT, GAC, GCG, GTA, TCG}. What is the shortest superstring you
can come up with? TCGACGCGTA (length 10)

Algorithms for shortest superstring
Simple greedy strategy:

while # strings > 1 do

merge two strings with maximum overlap

Other approaches are based on graph theory…

Overlap graph
For a set of sequence reads S, construct a complete directed weighted graph G = (V,E,w)

– with one vertex per read (vi corresponds to si)

– w(vi,vj) = overlap(si ,sj) = length of longest suffix of si that is a prefix of sj

Overlap graph example: Let S = {AGA, GAT, TCG, GAG}

Assembly as finding a Hamiltonian path (path through graph that visits each vertex exactly once)
Minimize superstring length = minimize weight of Hamiltonian path in overlap graph with edge weights
negated (we go for minimal weights aka max overlaps)

finding Hamiltonian path is an NP-complete problem, but nevertheless overlap graphs are often used for
sequence assembly

– can detect repeats (?)

– heuristical hierarchical decomposition • unitigs (no forks, no conflicts) solved first

– mate-pairs to scaffold (?)

de Bruijn graph

– edges represent k-mers = subsequence of DNA of lenght k

– vertices correspond to (k-1)-mers

{ATG, TGG, TGC, GTG, GGC, GCA, GCG, CGT}

Can we find a DNA sequence containing all k-mers?

• In a de Bruijn graph, can we find a path that visits every edge of the graph exactly once?

path: GAGATCG
path weight: -5
string length: 7

Eulerian cycle algorithm
1) start at any vertex v, traverse unused edges until returning to v
2) while the cycle is not Eulerian

– pick a vertex w along the cycle for which there are untraversed outgoing edges

– traverse unused edges until ending up back at w

– join two cycles into one cycle

Assembly as finding Eulerian paths in de Bruijns graph, where resulting sequences contain all k-mers

Violating assumptions in de Bruijn graphs
Assume a sequence: a_long_long_long_time

length m=21, the sequence contains repeats
Choose k=5, number of 5-mers is m-k+1=17
Assume different sets of k-mers:

 - ad a) all 5-mers ➡ detected correct assembly,

- ad b) omitting ong_t ➡ two connected components, the overall graph is not Eulerian,

- ad c) extra copy of ong_t ➡ 4 semi-balanced nodes, graph not Eulerian,

- ad d) errors and differences between chromosomes, turn a copy of long_ into lxng_ ➡
graph not connected, largest component not Eulerian.

 See. Picture

Short k-mers in de Bruijn graphs
Only short k-mers guarantee that none is missed (must not be shorter, that the shortest read)

Still, lenghts of k-mers don't matter in terms of complexity, which remains O(N) where N = the total
length of reads

De Bruijn graph with N edges and N nodes too can be constructed in O(N), Euler cycle found in O(N).

Repetitive sequences

• Most common source of assembly errors

• If sequencing technology produces |read| > |repeat| size, impact is much smaller

• Most straightforward solution: mate pairs with spacing > largest known repeat

Mis-assembly of repetitive sequence

In scenario below both green-yellow and yellow-blue borders are contained in some k-

mer, but the yellow-red one is not (a k-mer ends exactly at the border)

Paired and reads:
When we sequence a fragment from both ends and we know the fragment length, we can validate the

assembly by checking, whether the distance between the two ends in the resulting genom is the same, as the

distance between the ends in the fragment (the orange end serves as an anchor)

The Velvet assembler

• built upon de Bruijn graphs

• includes additional tricks for – reducing the size of the graph

– trying to correct for errors in sequences

– taking advantage of paired-end reads

Velvet error correction

chimeric edges → clip short, low

coverage nodes

errors in middle of read (pop-up

bubbles)

errors at the end of read → trim off

„dead-end“ tips

 Pairwise Sequence Alignment

(Protein alignment)

The role of homology in alignment
• homology: similarity due to descent from a common ancestor

• often we can infer homology from similarity -> thus we can sometimes infer structure/function from
sequence similarity

(Homology example, evolution of hemoglobin)

homologous sequence groups:
– orthologous sequences: sequences that differ because they are found in different species (e.g.

human !-globin and mouse !-globin)
– paralogous sequences: sequences that differ because of a gene duplication event (e.g. human α-
globin and human β-globin, various versions of both)

Important implications: while orthologs often fulfill the same role, paralogs tend to diverge in their
function, so paralogy is a worse indicator of functional analogy than orthology.

Given

– a pair of sequences (DNA or protein)
– a method for scoring a candidate
alignment

Do
– determine the correspondences between
substrings in the sequences such that the
similarity score is maximized

DNA seqence edits

• for short DNA sequences (gene scale) we will generally only consider
– substitutions
– insertions/deletions

• for longer DNA sequences (genome scale) we will consider additional events
– transpositions
– inversions

Why is it that two “similar” proteins may have large insertions/deletions?
– some insertions and deletions may not significantly affect the structure of a protein

Issues in sequence alignment
• the sequences we’re comparing typically differ in length

• there may be only a relatively small region in the sequences that matches

• we want to allow partial matches (i.e. some amino acid pairs are more substitutable than others)

Inversion:

5‘ ACGGAGA 3‘
3‘ TGCCTCT 5‘

We have a DNA double helix, where the two
opposing/complementary fragments get
switched
Order of letters switched as well (5‘ -> 3‘)

• variable length regions may have been inserted/deleted from the common ancestral sequence

Types of alignment
• global: find best match of both sequences in their entirety

• local: find best subsequence match

• semi-global: find best match without penalizing gaps on the ends of the alignment

Scoring an alignment: what is needed?
• substitution matrix

– s(a,b) indicates score of aligning character a with character b

• gap penalty function
– w(g) indicates cost of a gap of length g

 (substitution matrix for amino acides)

How do we construct subst. matrix? Where did the weights come from?
At the beginning, we start with an empty matrix, therefore we do the alignment manually. For that purposes,
we start with a pool of very similar proteins. From those alignments, we derive the initial form of the matrix,
which we then use for automated alignment. We update our matrix repeat the process until the weights don’t
change = bootstraping

The weights themselves are calculated as follows: 𝑙𝑜𝑔 (
𝑞𝑖,𝑗

𝑝𝑖𝑝𝑗
) where 𝑝𝑖𝑝𝑗 are probabilities of AA i,j and 𝑞𝑖,𝑗 is

the probability of occurrence of their alignment
logarithm is to avoid small numbers coming from prob.

BLOSUM62 = matrix where the number denotes how close were the relations between proteins in the pool

A W

A W

W A

qAA = 1/6
qAW = 4/6

Linear gap penalty function
• the simplest case is when a linear gap function is used

w(g) = - g . d where d is a constant

• we’ll start by considering this case, although linear function is biologically wrong. The following sequences
have the same score: A–A–A vs. A–-AA but the second one is biologically more likely to happen

EX: VAHV---D--DMPNALSALSDLHAHKL

AIQLQVTGVVVTDATLKNLGSVHVSKG

Pairwise alignment via dynamic programming
= determine best alignment of two sequences by determining best alignment of all prefixes of the sequences

- one way to specify the DP is in terms of its recurrence relation:

Heuristic methods for sequence database searching

 Heuristic alignment motivation
• O(mn) too slow for large databases with high query traffic

• heuristic methods do fast approximation to dynamic programming
–FASTA [Pearson & Lipman, 1988]
–BLAST [Altschul et al., 1990;

• consider the task of searching UniProtKB/Swiss-Prot against a query sequence:

– say our query sequence is 362 amino-acids long

– most recent release of DB contains 188,719,038 amino acids

– finding local alignments via dynamic programming would entail O(1011) matrix operations

• many servers handle thousands of such queries a day (NCBI > 500,000)

𝑠𝑒𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑜𝑓 𝑠𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑡 𝑚𝑎𝑡𝑐ℎ𝑒𝑠 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑

𝑜𝑓 𝑠𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑡 𝑚𝑎𝑡𝑐ℎ𝑒𝑠 𝑖𝑛 𝐷𝐵

Overview of BLAST (Basic Alignment Search Tool)
• given: query sequence q, word length w, word score threshold T, segment score threshold S

Score =

s(V,A) + s(A,I) + s(H,Q) + s(V,L) – 3d + s(D,G) – 2d

Rules:
s(i,j) = +1 if xi = xj

= -1 if xi ≠ xj
d (penalty for aligning with a gap) = -2

• compile a list of “words” (of length w) that score at least T when compared to words from q

–scan database for matches to words in list

–extend all matches to seek high-scoring alignments

• return: alignments scoring at least S

Determining query words
Given: query sequence: QLNFSAGW

word length w = 2 (default for protein usually w = 3)
word score threshold T = 9

Step 1: determine all words of length w in query sequence
QL LN NF FS SA AG GW

Step 2: determine all words that score at least T when compared to a word in the query sequence

Step 3: search database for all occurrences of query words

–index database sequences into table of words (pre-compute this)

–index query words into table (at query time)

Step 4: extend hits in both directions (without allowing gaps) into local alignments

- terminate extension in one direction when score falls certain distance below best score for shorter
extensions

Each cross = strong hit, dot = weaker hit (in

terms of score)

Two hit method

I want to extend those hits, which will

connect me to the other hits. Therefore,

extending weak hits may be in some cases

better

- return segment pairs scoring at least S (best extension doesn’t have to necesserily score above S)

BLAST comments
• it’s heuristic: may miss some good matches

• it’s fast: empirically, 10 to 50 times faster than Smith-Waterman

• the main parameter controlling the sensitivity vs. running-time trade-off is T (threshold for what
becomes a query word) –small T: greater sensitivity, more hits to expand and vice versa

• large impact: –NCBI’s BLAST server handles more than 500,000 queries a day
–most used bioinformatics program in the world

Multiple sequence alignment
Task Definition • Given – a set of more than 2 sequences

– a method for scoring an alignment

• Do: – determine the correspondences between the sequencessuch that the alignment
 score is maximized

Motivation for MSA
• establish input data for phylogenetic analyses

• determine evolutionary history of a set of sequences
– at what point in history did certain mutations occur?

• discovering a common motif in a set of sequences (e.g. DNA sequences that bind the same protein)

• characterizing a set of sequences (e.g. a protein family)

• building profiles for sequence-database searching

– PSI-BLAST generalizes a query sequence into a profile to search for remote relatives

(Multiple Alignment of SH3 Domain)

Scoring a Multiple Alignment
• key issue: how do we assess the quality of a multiple sequence alignment?

𝑆𝑐𝑜𝑟𝑒(𝑚) = 𝐺 + ∑ 𝑆(𝑚𝑖)𝑖 where G is gap function and S(mi) score of the i-th column

• we’ll discuss two methods – sum of pairs (SP)
– minimum entropy

 Scoring an Alignment: Sum of Pairs
• compute the sum of the pairwise scores

 𝑆𝑐𝑜𝑟𝑒(𝑚𝑖) = ∑ 𝑠(𝑚𝑘
𝑖 , 𝑚𝑙

𝑖)𝑘<𝑙

mk
i =character of the kth sequence in the i th column

s = substitution matrix

• this method is biologically insufficient. Consider this result:

 Scoring an Alignment: Minimum Entropy
• basic idea: try to minimize the entropy of each column

• another way of thinking about it: columns that can be communicated using few bits are good

• information theory tells us that an optimal code uses bits to encode a message -log2p of probability p

Ex: AAAA (0 bits), AAAC (<1 bit), AACC (1bit)

MSA: Dynamic Programming Approach
• We have 2 scoring methods now (sum of pairs and minimum enthropy). Now we can utilize them to
find optimal alignments using dynamic programming

• generalization of methods for pairwise alignment
– consider k-dimension matrix for k sequences (instead of 2-dimensional matrix)
– each matrix element represents alignment score for k subsequences (instead of 2
subsequences)

• given k sequences of length n, space complexity is O(nk)
 -time complexity is O(k22knk) – we have nk, for which we examine 2kneighbours if computed

with sum of pairs, is O(k2knk) with minium enthropy

MSA: Heuristic Alignment Methods
• since time complexity of DP approach is exponential in the number of sequences, heuristic methods are
usually used

• progressive alignment: construct a succession of pairwise alignments
– star approach
– tree approaches, like CLUSTALW

Star Alignment Approach
• given: k sequences to be aligned 𝑥1, 𝑥2, … , 𝑥𝑘

– pick one sequence as the “center” 𝑥𝑐
– for each other sequneces 𝑥𝑖 determine an optimal alignment between 𝒙𝒊 and 𝒙𝒄
– merge pairwise alignments

• return: multiple alignment resulting from aggregate

 • approaches to Picking the Center
1. try each sequence as the center, return the best multiple alignment

2. compute all pairwise alignments and select the string that maximizes:
 ∑ 𝑠𝑖𝑚(𝑥𝑖 , 𝑥𝑐)𝑖≠𝑐 (ie. pick the most similar to the others)

 • aggregating Pairwise Alignments - “once a gap, always a gap” rule (see example)

A A A C

column (A-A-A-C) with score -1 for mismatch

s = 3*s(A, A) + 3*s(A, C) = 3 – 3 = 0

Score is 0 even though the sequences might be
quite similar

Tree Alignments
• basic idea: organize multiple sequence alignment using a guide tree

– leaves represent sequences
– internal nodes represent alignments

• determine alignments from bottom of tree upward
– return multiple alignment represented at the root of the tree

• one common variant: the CLUSTALW algorithm [Thompson et al. 1994]

Doing the Progressive Alignment in CLUSTALW
• depending on the internal node in the tree, we may have to align a

– a sequence with a sequence
– a sequence with a profile (partial alignment)
– a profile with a profile

• in all cases we can use dynamic programming
– for the profile cases, use SP scoring

(Tree alignment example)

Introduction to Phylogenetic Trees
task definition • Given – data characterizing a set of species/genes

• Do – infer a phylogenetic tree that accurately

– characterizes the evolutionary lineages among the species/genes

Phylogenetic tree basics
• leaves represent things (genes, species, individuals/strains) being compared

• internal nodes are hypothetical ancestral units

• in a rooted tree, path from root to a node represents an evolutionary path

– the root represents the common ancestor (see (Homology example, evolution of hemoglobin)

• an unrooted tree specifies relationships among things, but not evolutionary paths

Why construct trees?
– to understand lineage of various species

– to understand how various functions evolved

– to inform multiple alignments

– to identify what is most conserved/important in some class of sequences

• aligning sequences/profiles to profiles
is essentially pairwise alignment

– shift entire columns when

incorporating gaps

Building a tree:

1. do pair alignment for all sequences

2. pick the best scored alignment and

create a profile

The profile is “locked”, which means we

do not shift individual sequences in the

profile, only add gaps/shift the entire

compound

(Baboon phylogeny)

Genetic Analysis of Lice Supports Direct Contact between Modern and Archaic Humans

Phylogeny below supports a theory of human evolution in which:

Data for building trees
• trees can be constructed from various types of data

• inferred phylogeny of lice species closely
parallels accepted phylogeny of their hosts

• can phylogeny of lice tell us something about
evolution of hosts?

– H. erectus and the ancestors of H. sapiens had little or no
contact for a long period of time

– there was contact between H.erectus and H. sapiens as
late as 30,000 years ago

– distance-based: measures of distance between species/genes

– character-based: morphological features (e.g. #legs), DNA/protein sequences

– gene-order: linear order of orthologous genes in given genomes

Rooted vs. unrooted trees

Number of possible trees

Phylogenetic tree approaches
• three general types of methods:

– distance: find tree that accounts for estimated evolutionary distances

– parsimony: find the tree that requires minimum number of changes to explain the data

– maximum likelihood: find the tree that maximizes the likelihood of the data

Distance-Based Approaches to Inferring Phylogenetic Trees
Distance representation in rooted and unrooted trees

given: an 𝑛×𝑛 matrix 𝑀 where 𝑀𝑖𝑗 is the distance between taxa i and j!

do: build an edge-weighted tree such that the distances between leaves i and j correspond to Mij

• given n sequences, there are

 ∏ (2𝑖 − 5𝑛
𝑖=3) possible unrooted trees

(2𝑛 − 3) ∏ (2𝑖 − 5𝑛
𝑖=3) possible rooted trees

Distances
• commonly obtained from sequence alignments. in alignment of sequence i with sequence j:

𝑑𝑖𝑠𝑡(𝑖, 𝑗) =
#𝑚𝑖𝑠𝑚𝑎𝑡𝑐ℎ𝑒𝑠

#𝑚𝑖𝑠𝑚𝑎𝑡𝑐ℎ𝑒𝑠 + #𝑚𝑎𝑡𝑐ℎ𝑒𝑠

• properties of a distance metric

𝑑𝑖𝑠𝑡(𝑥𝑖 , 𝑥𝑗) ≥ 0

𝑑𝑖𝑠𝑡(𝑥𝑖 , 𝑥𝑖) = 0

𝑑𝑖𝑠𝑡(𝑥𝑖 , 𝑥𝑗) = 𝑑𝑖𝑠𝑡(𝑥𝑗 , 𝑥𝑖)

𝑑𝑖𝑠𝑡(𝑥𝑖 , 𝑥𝑗) ≤ 𝑑𝑖𝑠𝑡(𝑥𝑖 , 𝑥𝑘) + 𝑑𝑖𝑠𝑡(𝑥𝑘 , 𝑥𝑗)

The molecular clock hypothesis
• In the 1960s, sequence data were accumulated for small, abundant proteins such as globins, cytochromes c,
and fibrinopeptides. Some proteins appeared to evolve slowly, while others evolved rapidly.

• Linus Pauling, Emanuel Margoliash and others proposed the hypothesis of a molecular clock: For every given
protein, the rate of molecular evolution is approximately constant in all evolutionary lineages
 - E. Margoliash, who wrote: "It appears that the number of residue differences between cytochrome c
of any two species is mostly conditioned by the time elapsed since the lines of evolution leading to these two
species originally diverged. If this is correct, the cytochrome c of all mammals should be equally different from
the cytochrome c of all birds. Since fish diverges from the main stem of vertebrate evolution earlier than either
birds or mammals, the cytochrome c of both mammals and birds should be equally different from the
cytochrome c of fish. Similarly, all vertebrate cytochrome c should be equally different from the yeast protein.

• the molecular clock assumption is not generally true: selection pressures vary across time periods,
organisms, genes within an organism, regions within a gene

• if the assumption does hold, then the data is said to be ultrametric

https://en.wikipedia.org/wiki/Emanuel_Margoliash
https://en.wikipedia.org/wiki/Cytochrome_c

The UPGMA method
• (Unweighted Pair Group Method using Arithmetic Averages)

• given ultrametric data, UPGMA will reconstruct the tree T that is consistent with the data

• basic idea: – iteratively pick two taxa/clusters and merge them
– create new node in tree for merged cluster

• distance between clusters 𝑪𝒊 and 𝑪𝒋 of taxa is defined as

𝑑𝑖𝑗 =
1

|𝐶𝑖||𝐶𝑗|
∑ 𝑑𝑝𝑞

𝑝∈𝐶𝑖,𝑞∈𝐶𝑖

 (avg. distance between pairs of taxa from each cluster)

UPGMA algorithm
assign each taxon to its own cluster
define one leaf for each taxon; place it at height 0
while more than two clusters

find two clusters i, j with smallest 𝒅𝒊𝒋

define a new cluster 𝑪𝒌 = 𝑪𝒊 ∪ 𝑪𝒋

define a node k with children i and j; place it at height 𝒅𝒊𝒋/𝟐

replace clusters i and j with k
compute distance between k and other clusters

join last two clusters, i and j, by root at height 𝑑𝑖𝑗/2

• given a new cluster 𝑪𝒌 formed by merging 𝑪𝒊 and 𝑪𝒋

• we can calculate the distance between 𝑪𝒌 and any other cluster 𝑪𝒍 as follows:

𝑑𝑘𝑙 =
𝑑𝑖𝑙|𝐶𝑖| + 𝑑𝑗𝑙|𝐶𝑗|

|𝐶𝑖| + |𝐶𝑗|

UPGMA example

Neighbor joining
• unlike UPGMA

– doesn’t make molecular clock assumption
– produces unrooted trees

• does assume additivity: distance between pair of leaves is sum of lengths of edges connecting them

• ultrametric data: for any triplet of sequences, i, j, k, the
distances are either all equal, or two are equal and the
remaining one is smaller
• M(i,j) can be considered the time since i and j diverged in
evolution:
“A and B had last common ancestor 8 million years ago”

• like UPGMA, constructs a tree by iteratively joining subtrees

• two key differences
– how pair of subtrees to be merged is selected on each iteration
– how distances are updated after each merge

Picking pairs of nodes to join in NJ
• at each step, we pick a pair of nodes to join; should we pick a pair with minimal 𝒅𝒊𝒋?

• suppose the real tree looks like this and we’re picking the first pair of nodes to join?

• to avoid this, pick pair to join based on 𝐷𝑖𝑗

𝐷𝑖𝑗 = 𝑑𝑖𝑗 − (𝑟𝑖 + 𝑟𝑗)

𝑟𝑖 =
1

|𝐿| − 2
∑ 𝑑𝑖𝑘

𝑘∈𝐿

where L is the set of leaves and ri is average distance of node i to all nodes except i and j

Updating distances in neighbor joining
• given a new internal node k, the distance to another node m is given by:

km to each node m can be calculated only if additivity holds. Otherwise we have to take the average of all km

• can calculate the distance from a leaf to its parent node in the same way:

• we can generalize this so that we take into account the distance to all other leaves

𝑑𝑖𝑘 =
1

2
(𝑑𝑖𝑗 + 𝑟𝑖 + 𝑟𝑗)

𝑟𝑖 =
1

|𝐿| − 2
∑ 𝑑𝑖𝑘

𝑘∈𝐿

 - this is more robust if data aren’t strictly additive

Neighbor joining algorithm
define the tree T = set of leaf nodes
L = T
while more than two subtrees in T

pick the pair i, j in L with minimal 𝑫𝒊𝒋

add to T a new node k joining i and j

wrong decision to join A and B: need to consider
distance of pair to other leaves

determine new distances

𝑑𝑖𝑘 =
1

2
(𝑑𝑖𝑗 + 𝑟𝑖 + 𝑟𝑗)

𝑑𝑗𝑘 = 𝑑𝑖𝑗 − 𝑑𝑖𝑘

𝑑𝑘𝑚 =
1

2
(𝑑𝑖𝑚 + 𝑑𝑗𝑚 − 𝑑𝑖𝑗)

 remove i and j from L and insert k (treat it like a leaf)
join two remaining subtrees, i and j with edge of length

Testing for additivity
• for every set of four leaves, i, j, k, and l, two of the distances dij+dkl, dik+djl and dil+djk must be equal and not

less than the third

Rooting trees
• finding a root in an unrooted tree is sometimes accomplished by using an outgroup

• outgroup: a species known to be more distantly related to remaining species than they are to each other

• edge joining the outgroup to the rest of the tree is best candidate for root position

Comments on distance-based methods
• if the given distance data is ultrametric (and these distances represent real distances), then UPGMA will

identify the correct tree

• if the data is additive (and these distances represent real distances), then neighbor joining will identify the

correct tree

• otherwise, the methods may not recover the correct tree, but they may still be reasonable heuristics

• neighbor joining is commonly used

Parsimony-Based Approaches to Inferring Phylogenetic Trees
Phylogenetic tree approaches have three general types

– distance: find tree that accounts for estimated evolutionary distances
– parsimony: find the tree that requires minimum number of changes to explain the data
– maximum likelihood: find the tree that maximizes the likelihood of the data

Parsimony based approaches
given: character-based data

do: find tree that explains the data with a minimal number of changes
• focus is on finding the right tree topology, not on estimating branch lengths

EX: there are various trees that could explain the phylogeny of the sequences AAG, AAA, GGA, AGA including
these two:

• these approaches involve two separate components
1. a procedure to find the minimum number of changes needed to explain the data (for a given
tree topology)
2. a search through the space of trees

Finding minimum number of changes for a given tree
• basic assumptions

– any state (e.g. nucleotide, amino acid) can convert to any other state
– the “costs” of these changes are uniform
– positions are independent; we can compute the min number of changes for each position separately

• brute force approach
– for each possible assignment of states to the internal nodes, calculate the number of changes
– report tne min number of changes found

• runtime is O(NkN), where k = number of possible character states (4 for DNA)
 N = number of leaves

Fitch’s Algorithm [1971]

1. traverse tree from leaves to root determining set of possible states (e.g. nucleotides) for each internal
node
2. traverse tree from root to leaves picking ancestral states for internal nodes

Step 1 (possible states for internal nodes)
• do a post-order (from leaves to root) traversal of tree and determine possible states Ri of internal node i
with children j and k

𝑅𝑖 = 𝑅𝑗 ∪ 𝑅𝑘 if 𝑅𝑗 ∩ 𝑅𝑘 = ∅

 𝑅𝑗 ∩ 𝑅𝑘 otherwise

• parsimony prefers the first tree
because it requires fewer substitution
events

Step 2 (select states for internal nodes)
• do a pre-order (from root to leaves) traversal of tree and select state of internal node j with parent i
𝑟𝑗 = 𝑟𝑖 if 𝑟𝑖 ∈ 𝑅𝑗

 arbitrary state ∈ 𝑅𝑗 otherwise

Weighted parsimony
• instead of assuming all state changes are equally likely, use different costs S(a,b) for different changes

1st step of algorithm is to propagate costs up through tree
• want to determine cost 𝑅𝑖(𝑎) of assigning character 𝑎 to node i
• for leaves: 𝑅𝑖(𝑎) = 0 if character 𝑎 is at leaf
 ∞ otherwise

• for an internal node i with children j and k:
 𝑅𝑖(𝑎) = min𝑏 (𝑅𝑗(𝑏) + 𝑆(𝑎)) + min𝑏 (𝑅𝑘(𝑏) + 𝑆(𝑎)

2nd step of algorithm is to do a pre-order (from root to leaves) traversal of tree
– for root node: select minimal cost character
– for each internal node: select the character that resulted in the minimum cost explanation of the

character selected at the parent

Exploring the space of trees
• we’ve considered how to find the minimum number of changes for a given tree topology

• need some search procedure for exploring the space of tree topologies

Heuristic method: nearest neighbor interchange
• for any internal edge in a tree, there are 3 ways the four subtrees can be grouped

• nearest neighbor interchanges move from one grouping to another

hill-climbing with nearest neighbor interchange
given: set of leaves L

create an initial tree t incorporating all leaves in L

best-score = parsimony algorithm applied to t

repeat

 for each internal edge e in t

 for each nearest neighbor interchange

t’ = tree with interchange applied to edge e in t

score = parsimony algorithm applied to t’

 if score < best-score

 best-score = score

 best-tree = t’

 t = best-tree

until stopping criteria met

Exact method: branch and bound
• each partial tree represents a set of complete trees
• the parsimony score on a partial tree provides a lower bound on the best score in the set
• search by repeatedly selecting and growing the partial tree with the lowest lower bound

given: set of leaves L

use heuristic method to grow full initial tree t' // quickly e.g. with Fitch’s algorighm

initialize Q with a partial tree with 3 leaves from L

repeat

 t = tree in with lowest lower bound

 if has incorporated all leaves in L

 return t

 else

 create new trees by adding next leaf from L to each branch of t

 compute lower bound for each tree

 for each new tree n

 if lower-bound(n) < score(t')

 put n in Q sorted by lower bound

Rooted or unrooted trees for parsimony?
• we described parsimony calculations in terms of rooted trees
• but we described the search procedures in terms of unrooted trees
• unweighted parsimony: minimum cost is independent of where root is located
• weighted parsimony: minimum cost is independent of root if substitution cost is a metric (refer back to
definition of metric from distance-based methods)

Comments on branch and bound
• it is a complete search method – guaranteed to find optimal solution

• may be much more efficient than exhaustive search
- in the worst case, it is no better

• efficiency depends on
– the tightness of the lower bound
– the quality of the initial tree

Comments on tree inference
• search space may be large, but

– can find the optimal tree efficiently in some cases
– heuristic methods can be applied

• difficult to evaluate inferred phylogenies: ground truth not usually known
– can look at agreement across different sources of evidence
– can look at repeatability across subsamples of the data
– can look at indirect predictions, e.g. conservation of sites in proteins

• some newer methods use data based on linear order of orthologous genes along chromosome

• phylogenies for bacteria, viruses not so straightforward because of lateral transfer of genetic material (not
through ofspring); “local” phylogenies might be more appropriate

Probabilistic methods for phylogenetic tree reconstruction
Downsides to parsimony methods
• Scoring function parameters (costs for substitutions) are rather arbitrary

– The most “parsimonious” tree critically depends on these parameters

• Parsimony methods require assignments of character states to the ancestral nodes

– Only considers score of best assignment, which may not be the true one (the probabilistic
distribution would be better)

Alternative to parsimony: probabilistic-model based tree scoring
• Instead of cost S(a,b) of a substitution occurring along a branch, we will use a prob. P(child = a|parent= b)

• For a given tree, instead of finding a minimal cost assignment to the ancestral nodes, we will
sum the probabilities of all possible ancestral states

• Instead of finding a tree with minimum cost we will find a tree the maximizes likelihood (probability of
the data given the tree)

Probabilistic model setup
• We observe n sequences 𝑥1, 𝑥2, … , 𝑥𝑛

• We are given a tree T and want to model 𝑷(𝒙𝟏, 𝒙𝟐, … , 𝒙𝒏|𝑻)
– This is the likelihood (probability of the observed sequences given the model, the tree)

• For simplicity, we’ll just consider the case that our sequences are of length 1 (just one character)

• To generalize to longer sequences, we assume independence of each position (position = each column of an
ungapped multiple alignment)

– Probability of sequences = product of probability of each position/column

It will be easier to first consider a model in which we represent the states of the internal nodes of the tree
with random variables 𝑋𝑛+1, … , 𝑋2𝑛+1 (assuming rooted binary tree, where 𝑥1 … , 𝑥𝑛 are sequences):

• Then the probability of any particular configuration of states at all nodes in the tree will be defined as:

𝑃(𝑥1, 𝑥2, … , 𝑥𝑛|𝑇) = 𝑞𝑥2𝑛+1 ∏ 𝑃(𝑥𝑖|𝑥𝛼(𝑖))

2𝑛−2

𝑖=1

• 𝑞𝑥2𝑛+1is the prior probability of the state of the root node
• 𝛼(𝑖)is the index of the parent node of node i

• Key assumption: state of node i is conditionally independent of the states of its ancestors given the state
of its parent

• For simplicity, we are ignoring branch lengths for now

The likelihood
• We only care about the probability of the observed (extant) sequences

• Need to marginalize (sum over possible instantiations of ancestral states) to obtain the likelihood:

𝑃(𝑥1, 𝑥2, … , 𝑥𝑛|𝑇) = ∑ 𝑞𝑥2𝑛+1 ∏ 𝑃(𝑥𝑖|𝑥𝛼(𝑖))

2𝑛−2

𝑖=1𝑋𝑛+1,…,𝑋2𝑛+1

• But there is an exponential number of terms in this sum!
- dynamic programming to the rescue once again!

Felsenstein’s algorithm
• Initialize: 𝑘 = 2𝑛 − 1
• Recursion:

– If k is a leaf node 𝑃(𝐿𝑘|𝑎) = 1 𝑖𝑓 𝑎 = 𝑥𝑘
 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

– Else, compute 𝑃(𝐿𝑖|𝑎) and 𝑃(𝐿𝑗|𝑎) for all a at daughters i and j:

 𝑃(𝐿𝑘|𝑎) = ∑ 𝑃(𝑏|𝑎)𝑃(𝐿𝑖|𝑏)𝑏 ∑ 𝑃(𝑐|𝑎)𝑃(𝐿𝑖|𝑐)𝑐

 b and c represent the states of node i and node j, respectively

• Termination – likelihood is equal to:

∑ 𝑃(𝐿2𝑛−1|𝑎)𝑞𝑎

𝑎

Concluding remarks on probabilistic-model (likelihood) based approach
• Very similar to the weighted parsimony case

– Main differences are at
• Leaf nodes (they are assigned valeus 0 and ∞ vs. 0 and 1)
• Minimization versus summation for internal nodes

• Can it be used to infer ancestral states as well?
– Instead of summing, we would maximize
– As in the parsimony case, we would need to keep track of the maximizing assignment

• Substitution probabilities P(a|b) can be derived from principled mathematical models and/or estimated
from data

Example

For instance 𝑃(𝐿4|𝐴) was calculated as:

𝑃(𝐿𝑘|𝑎) = ∑ 𝑃(𝑏|𝑎)𝑃(𝐿1|𝑏)

𝑏={𝐴}

∑ 𝑃(𝑐|𝑎)𝑃(𝐿2|𝑐)

𝑐={𝑇}

=

𝑃(𝐴|𝐴)𝑃(𝐿1|𝐴)𝑃(𝑇|𝐴)𝑃(𝐿2|𝑇) = 0.7 ∙ 1 ∙ 0.1 ∙ 1 = 0.07

Markov Chain Models
Motivation for sequence modeling

there are many cases in which we would like to represent the statistical regularities of some class of sequences
– genes (which parts of DNA likely encode genes?)
– various regulatory sites in DNA (which regions are e.g. promoters?)
– proteins in a given family (does a given protein belong to this family?)

• a Markov chain model is defined by

– a set of states
• some states emit symbols
• other states (e.g. the begin and end states) are silent

– a set of transitions with associated probabilities
• the transitions emanating from a given state define a distribution over the possible next
states

Markov chain models
• from the chain rule we have:

𝑃(𝑋) = 𝑃(𝑋1)𝑃(𝑋2|𝑋1)𝑃(𝑋3|𝑋1𝑋2) …
• key property of a (1st order) Markov chain: the probability of each 𝑋𝑖 depends only on the value of 𝑋𝑖−1:

𝑷(𝑿) = 𝑃(𝑋1)𝑃(𝑋2|𝑋1)𝑃(𝑋3|𝑋1𝑋2) … = 𝑷(𝑿𝟏) ∏ 𝑷(𝑿𝒊|𝑿𝒊−𝟏)

𝑳

𝒊=𝟐

Example:
𝑃(𝑐𝑔𝑔𝑡) = 𝑃(𝑐)𝑃(𝑔|𝑐)𝑃(𝑔|𝑔)𝑃(𝑡|𝑔)𝑃(𝑒𝑛𝑑|𝑡)

Estimating the model parameters
• given some data, how can we determine the probability parameters of our model?
• one approach: maximum likelihood estimation

– given a set of data D
– set the parameters 𝜃 to maximize 𝑃(𝐷|𝜃)
– i.e. make the data D look as likely as possible under the model

Example: suppose we want to estimate the parameters P(a), P(c), P(g), P(t) and we’re given the sequences
accgcgctta
gcttagtgac
tagccgttac

• then the maximum likelihood estimates are:

 𝑃(𝑎) =
6

30
= 0.2, 𝑃(𝑔) =

7

30
= 0.233, 𝑃(𝑐) =

9

30
= 0.3, 𝑃(𝑡) =

8

30
= 0.267

• problem arises when there’s no occurence of some observant – then the parameter becomes 0
gccgcgcttg
gcttggtggc
tggccgttgc

• instead of estimating parameters strictly from the data, we could start with some prior belief for each

• for example, we could use Laplace estimates: 𝑷(𝒂) =
𝒏𝒂+𝟏

∑ (𝒏𝒊+𝟏)𝒊
 → 𝑃(𝑎) =

0+1

34

 or more general m-estimates: 𝑷(𝒂) =
𝒏𝒂+𝒑𝒂𝒎

(∑ 𝒏𝒊𝒊)+𝒎
 𝑷(𝑐) =

9+0.25𝑥8

30+8
 with m=8

where pa is prior probability of a and m is number of „virtual“ instances
• to estimate a 1st order parameter, such as P(c|g), we count the number of times that g follows the history c
in our given sequences
• using Laplace estimates with the sequences above:

𝑃(𝑎|𝑔) =
0+1

12+4
, 𝑃(𝑔|𝑔) =

3+1

12+4
, 𝑃(𝑐) =

7+1

12+4
, 𝑃(𝑡) =

2+1

12+4
,…

Higher order Markov chains
• the Markov property specifies that the prob. of a state depends only on the probability of the previous state

- but we can build more “memory” into our states by using a higher order Markov model

• in an nth order Markov model: 𝑃(𝑥𝑖|𝒙𝟏, … , 𝑥𝑖−1) = 𝑃(𝑥𝑖|𝒙𝒊−𝒏, … , 𝑥𝑖−1)

can also have an end state; allows the model to represent

– a distribution over sequences of different lengths

– preferences for ending sequences with certain symbols

𝑃(𝑥𝑖 = 𝑎|𝑥𝑖−1 = 𝑔) = 0.16

𝑃(𝑥𝑖 = 𝑡|𝑥𝑖−1 = 𝑔) = 0.34

𝑃(𝑥𝑖 = 𝑔|𝑥𝑖−1 = 𝑔) = 0.38

𝑃(𝑥𝑖 = 𝑐|𝑥𝑖−1 = 𝑔) = 0.12

P(a) = 0/30 = 0

• additional history can have predictive value

• Example: predict the next word in this sentence fragment
“… the__” (duck, end, grain, tide, wall, …?)

 Now predict it given more history

 „… against the ___“ (duck, end, grain, tide, wall, …?)

 „swim against the ___“ (duck, end, grain, tide, wall, …?)

Selecting the order of a Markov chain model
• but the number of parameters we need to estimate grows exponentially with the order

– for modeling DNA we need parameters for an nth order model (n 4-letter graphs interconnected)

• the higher the order, the less reliable we can expect our parameter estimates to be
– estimating the parameters of a 2nd order Markov chain from the complete genome of E. Coli, we’d
see each word > 72,000 times on average
– estimating the parameters of an 8th order chain, we’d see each word ~ 5 times on average

• an nth order Markov chain over some alphabet A is equivalent to a first order Markov chain over the
alphabet An of n-tuples

- EX: a 2nd order Markov model for DNA = a 1st order Markov model over alphabet (states)

AA, AC, AG, AT, CA, CC, CG, CT, GA, GC, GG, GT, TA, TC, TG, TT
- we process a sequence one character at a time A C G G T → AC – CG – GG – GT

Inhomogenous Markov chains
• in the Markov chain models we have considered so far, the probabilities do not depend on our position
in a given sequence

Example application
• CpG islands

– CG dinucleotides are rarer in eukaryotic DNA than expected given the marginal prob. of C and G

– but the regions upstream of genes are richer in CG dinucleotides than elsewhere – CpG islands
→ useful evidence for finding genes

• predict CpG islands with Markov chains
1. train two Markov models: one to represent CpG island sequence regions, another to represent
other sequence regions (null)

2. given a test sequence, use two models to determine probability that sequence is a CpG island
– i.e classify the sequence (CpG or null)

• in an inhomogeneous Markov model, we can
have different distributions at different positions

• consider modeling codons in protein coding
regions

3. using Bayes’ rule tells us: 𝑃(𝐶𝑝𝐺|𝑥) =
𝑃(𝑥|𝐶𝑝𝐺)𝑃(𝐶𝑝𝐺)

𝑃(𝑥)
=

𝑃(𝑥|𝐶𝑝𝐺)𝑃(𝐶𝑝𝐺)

𝑃(𝑥|𝐶𝑝𝐺)𝑃(𝐶𝑝𝐺)+𝑃(𝑥|𝑛𝑢𝑙𝑙)𝑃(𝑛𝑢𝑙𝑙)

 - where 𝑷(𝒙|𝑪𝒑𝑮) is obtained by running the Markov chain inference

- if we don’t take into account prior probabilities of two classes 𝑃(𝐶𝑝𝐺|𝑥) and 𝑃(𝑛𝑢𝑙𝑙|𝑥)
then we just need to compare 𝑃(𝑥|𝐶𝑝𝐺) and 𝑃(𝑥|𝑛𝑢𝑙𝑙)

Hidden Markov Models
The hidden part of the problem
• we’ll distinguish between the observed parts of a problem and the hidden parts

• in the Markov models we’ve considered previously, it is clear which state accounts for each part of the
observed sequence

• in the model below, there are multiple states that could account for each part of the observed
sequence – this is the hidden part of the problem

Simple HMM for gene finding

• light bars represent negative sequences

• dark bars represent positive sequences (i.e. CpG islands)

• the dashed line is the treshold. Here in log domain it’s 0,
otherwise 1

A typical question using HMM is e.g.:

Given say a T in our input sequence, which state emitted it?

The parameters of an HMM (transition and emittion)
• as in Markov chain models, we have transition probabilities (at time i)

𝛼𝑠𝑡 = 𝑃(𝜎𝑖 = 𝑠|𝜎𝑖−1 = 𝑡) … probability of a transition from state s to t

where 𝝈 represents a path (sequence of states) through the model

• since we’ve decoupled states and characters, we might also have emission probabilities (at time i)

𝑒𝑠(𝑐) = 𝑃(𝑥𝑖 = 𝑐|𝜎𝑖 = 𝑠) … probability of emitting character c in state s

Three important questions
• How likely is a given sequence?

the Forward algorithm

• What is the most probable “path” for generating a given sequence?
the Viterbi algorithm

• How can we learn the HMM parameters given a set of sequences?
the Forward-Backward (Baum-Welch) algorithm

How likely is a given sequence?
• the probability that the path of states 𝜎0 … 𝜎𝑁 is taken and the sequence 𝑥1 … 𝑥𝐿 is generated:

𝑃(𝑥1 … 𝑥𝐿 , 𝜎0 … 𝜎𝑁) = ∏ 𝑒𝜎𝑖

𝐿

𝑖=1

(𝑥𝑖)𝑎𝜎𝑖𝜎𝑖+1

 i.e. product of probability of transition between states and probability of emitting the symbol

• problem is there is exponential number of paths (for two states and seq. length L there are 2L paths)
- how to find the best one? → Forward algorithm (dynamic programming)

Forward algorithm
• define 𝑓𝑠(𝑖) to be the probability of being in state s having observed the first i characters of x

• we want to compute 𝑓𝑆(𝐿), the probability of being in the end state having observed all of x

• can define this recursively

HMM with 5 states with transition probabilites

between them

Each state has also its own emittion probabilities of

the characters

EX: How likely is that the sequence ACC was

generated by the orange path?

• because of the Markov property (probability of the current state depends only on the states directly
preceeding it), don’t have to explicitly enumerate every path – use dynamic programming instead

• e.g. assume state 4 can accessed from states 1 and 2, then we can compute 𝑓4(𝑖) as probability of emitting the
symbol at state 4 times sum of product of probabilities of being in state 1,2 given i-1 characters 𝑓2(𝑖 − 1) a
𝑓1(𝑖 − 1) times probability of transitioning from states 1,2 to state 4

• the dynamic programming matrix will be calculated as (relation for every state l with i chars read):

𝑓𝑙(𝑖) = 𝑒𝑙(𝑖) ∑ 𝑓𝑘(𝑖 − 1)

𝑘

𝛼𝑘𝑙

 - recursion for silent states 𝑓𝑙(𝑖) = ∑ 𝑓𝑘(𝑖)𝑘 𝛼𝑘𝑙

Finding the most probable path: the Viterbi algorithm
• define 𝑣𝑘(𝑖), to be the probability of the most probable path accounting for the first i characters of x and
ending in state k

• we want to compute 𝑣𝑆(𝐿), the probability of the most probable path accounting for all of the sequence and
ending in the end state

- can define recursively, use DP to find efficiently

• recursive definition:

 𝑣𝑙(𝑖) = 𝑒𝑙(𝑥𝑖)max𝑘 [𝑣𝑘(𝑖 − 1)𝑎𝑘𝑙]

 𝑝𝑟𝑜𝑏𝑎𝑏𝑙𝑒_𝑡𝑟𝑎𝑐𝑘𝑙(𝑖) = arg max𝑘 [𝑣𝑘(𝑖 − 1)𝑎𝑘𝑙]

- silent states 𝑣𝑙(𝑖) = max𝑘 [𝑣𝑘(𝑖)𝑎𝑘𝑙]

 𝑝𝑟𝑜𝑏𝑎𝑏𝑙𝑒_𝑡𝑟𝑎𝑐𝑘𝑙(𝑖) = arg max𝑘 [𝑣𝑘(𝑖)𝑎𝑘𝑙]

How can we learn the HMM parameters given a set of sequences?
• here the task is more difficult, than in the Markov models – there are no annotated sequences

• parameters can be learnt either in general way (Bawn-Welsh EM algorithm) or we can exploit biological
traits and use multiple sequence alignment:

Applications
Given: an uncharacterized DNA sequence
Do: locate the genes in the sequence, including the coordinates of individual exons and introns

Sources of evidence for gene finding
• signals: the sequence signals (e.g. splice junctions) involved in gene expression

• content: statistical properties that distinguish proteincoding DNA from non-coding DNA

• conservation: signal and content properties that are conserved across related sequences (e.g. syntenic
regions of the mouse and human genome)

The GENSCAN HMM for Eukaryotic Gene Finding

Search by content:

encoding a protein affects the statistical

properties of a DNA sequence

GENSCAN uses a variety of submodel types

In case of exons, we can use a reading frame of 3 letters (codon) with a 5th order Markov chain

• given a sequence, find the most probable path through the model for the sequence

• this path will specify the coordinates of the predicted genes (including intron and exon boundaries)
- the Viterbi algorithm is used to compute this path

Statistical Microarray Data Analysis
Method of high-throughput screening using microarray data

Hypothesis are induced to find significantly differentially expressed genes (because of insufficient number od
data and highly complex mutual influence we consider gene sets instead – we just have too many attributes
and too few samples to work with genes alone)

Measuring RNA abundances
• changes in phenotype don’t have to have a analogy in the DNA (may be caused by epigenetic …).
It’s therefore suitable to measure the abundance on the level of proteins. This abundance is however
difficult/expensive. We must move a level lower and we measure the inference between RNA and phenotype.

• what is varied: individuals, strains, cell types, environmental conditions, disease states, etc.
 - each of these elements influence the gene expression
• what is measured: RNA quantities for thousands of genes, exons or other transcribed sequences

Oligonucleotide arrays
• given a gene to be measured, select different n-mers for the gene

- can also select n-mers for noncoding regions of the genome

• selection criteria
–specificity (has to characteristic enough for that gene)
–hybridization properties
–ease of manufacturing

Microarrays and Hybridization
• selected n-mers are placed on squares (one for each gene) - pixels of an image/chip

• sample RNA is reversely re-written to cDNA (complementary DNA)

• during the hybridization samples of fragmented and colored cDNA are applied on this chip

 - cDNA fragments will bind to its counterpart on the chip and thanks to the coloring we know which

genes are expressed

One-color vs two-color microarray

Goals of microarray data analysis
• Human disease diagnostics and treatment

- disease predispositions/risk factors
- monitor disease stage and treatment progress

• Agricultural diagnostics and development
- find plant pathogens to improve plant protection
- efficiacy and economy in plant biotechnology

• Analysis of food and GMOs
- determine the integrity of food
- detect alterations and contaminations

Other measurements
• apart from MAs, we can characterize cells in terms of protein or metabolite (small molecule) abundances

- not as common as mRNA profiling, however, because the technology for doing it is not as mature
• also, there are miRNA, SNP or DNA methylation arrays.
 - changes in gene expression may be not caused only by changes in exons (and consequently in RNA),

but also by methylation changes in the promoter region or miRNA effects

Microarray data
Each row is a microarray of an

individual and each column is an

examined gene

Ways of MA data analysis
• Predictive modeling: molecular classifiers

- large potential applicability, but risk of low reliability and comprehensibility
– e.g., 70% accuracy is not enough when explanation is missing
–decision based on a large number of genes is expensive

- SVM, RF, kNN, classification rules etc. where gene expression are attributes

- classifying samples: to which class does a given sample belong
- classifying genes: to which functional class does a given gene belong (what does it do)

• rather simpler tasks of Descriptive modeling
 - any genes with similar expression profiles?

–clustering, bi-clustering
–the genes potentially being regulated together

- any genes potentially discriminating among classes?
–t-tests, SAM
–potential risk factors

 - can we characterize these genes?
–significant GO terms, pathways, locations (chromozomes)
–focus on human disease diagnostics and treatment

ALL/AML dataset
• distinguishing between two acute leukemia types

– acute lymphoblastic leukemia (ALL); largely a pediatric disease
–acute myeloid leukemia (AML), the most frequent leukemia form in adults

• microarray chip with probes for 7129 genes, 72 class-labeled samples (47 ALL, 25 AML)

T-test,
Familywise error rate = mushroom picking (as much mushrooms and as little poisonous as possible)
False Discover Rate = rasperberry picking – false positive shouldn’t be higher than a specified rate)
36 genes have w=83 (null distr. Expects cca 15) than FDR would be 40%. If it is not sufficient for us, we can
move more to the right, where the FDR decreases
Problem with this technique is that it assumes genes comes from iid distribution. But genes usually ho

Protein Structure Prediction

The Protein Folding Problem
• we know that the function of a protein is determined by its 3D shape (fold, conformation)
• in general, we can’t predict the 3D shape of a protein given only its amino-acid sequence

- but methods that give us a partial description of the 3D structure are still helpful

Protein Architecture
• proteins are polymers consisting of amino acids linked by peptide bonds

• each amino acid consists of – a central carbon atom
– an amino group NH2
– a carboxyl group COOH
– a side chain

• differences in side chains distinguish different amino acids:

• side chains vary in: shape, size, polarity, charge

What Determines Fold?
• in general, the amino-acid sequence of a protein determines the 3D shape of a protein

• but some exceptions:
– all proteins can be denatured
– some molecules have multiple conformations
– some proteins get folding help from chaperones
– prions can change the conformation of other proteins

• what physical properties of the protein determine its fold?

– rigidity of backbone (peptide skeleton)

– interactions among amino acids, including

• electrostatic interactions
• van der Waals forces
• volume constraints
• hydrogen, disulfide bonds

– interactions of amino acids with water

Levels of Description
• secondary structure refers to certain common repeating structures

• it is a “local” description of structure

• 2 common secondary structures
σ helices
β sheets

• a 3rd category, called coil or loop, refers to everything else (they inter-connect protein parts)

 σ helices β sheets and coils

Determining Protein Structures
• protein structures can be determined experimentally (in most cases) by

– x-ray crystallography
– nuclear magnetic resonance (NMR)

• but this is very expensive and time-consuming

Comparison of:

new protein structure entries (orange -

SWISS-PROT) and

new protein entries (green – DPB)

Top Levels of CATH Taxonomy

Approaches to Protein Structure Prediction
• prediction in 1D

– secondary structure (what part is helix, what part is sheet)
– solvent accessibility (how is a part accessbile to water – hydrophobic in the center of the sequence)
– transmembrane helices

• prediction in 2D
 – input is a matrix of AA residues and their chemical attributes

– predicting inter-residue/strand contacts

• prediction in 3D
– homology modeling
– fold recognition (e.g. via threading)
– ab initio prediction (taking into account all chemical properties; extremely comples)

Secondary Structure Prediction
• given: an amino-acid sequence
• do: predict a secondary-structure state (a, b, coil) for each residue in the sequence

KELVLALYDYQEKSPREVTMKKGDILTLLM...

cccccccccccccccccccccc...

1) make prediction for a given residue by considering a window of n (typically 13-21) neighboring residues
2) learn model that performs mapping from window of residues to secondary structure state

Comparison of:

new protein fold entries (blue) and

old protein fold entries (red)

We see there is no such a increase in new

CATH folds -> proteins are just combinations

of the existing folds

Homology Modeling
• observation: proteins with similar sequences tend to fold into similar structures

• given: a query sequence Q, database of protein structures
• do: – find protein P such that • structure of P is known

• P has high sequence similarity to Q

– return P’s structure as an approximation to Q’s structure

• homologs – proteins with different DNA, but similar function thus similar structure

• most pairs of proteins with similar structure are remote homologs (< 25% sequence similarity)

• homology modeling usually doesn’t work for remote homologs ; most pairs of proteins with < 25%
sequence identity are unrelated

Protein Threading
• generalization of homology modeling - homology modeling: align sequence to sequence

– threading: align sequence to structure

• key ideas – limited number of basic folds found in nature

– amino acid preferences for different structural environments provides sufficient information
to choose among folds

Components of Threading Approach
1. library of core fold templates
2. objective function to evaluate any particular placement of a sequence into a core template
3. method for searching over space of alignments between sequence and each core template
4. method for choosing the best template given alignments

Core Template with Interactions

We try to map the proten B into the

structure (fold) given by protein A

• small circles represent amino acid positions

• thin lines indicate interactions represented in model (Van der

Vaals forces, electric forces etc.)

Objective Functions
• the objective function scores the sequence/structure compatibility between

– sequence of amino acids
– their corresponding positions in the core template

• it takes into account factors such as
– a.a. preferences for solvent accessibility
– a.a. preferences for particular secondary structures
– interactions among spatially neighboring amino acids

Threading
• a threading can be represented as a vector, where each element indicates the index of the amino acid
placed in the first position of each core segment

• finding the optimal alignment is NP-hard in the general case where
– there are variable length gaps between the core segments
– the objective function includes interactions between neighboring amino acids

Objective Function

𝑓(𝑡) = ∑ 𝑓𝑣𝑒𝑟𝑡𝑒𝑥(𝑣, 𝑡) +

𝑣∈𝑉

∑ 𝑓𝑒𝑑𝑔𝑒({𝑢, 𝑣}, 𝑡) +

{𝑢,𝑣}∈𝐸

∑ 𝑓𝑙𝑜𝑜𝑝(𝜆𝑖 , 𝑡)

𝜆∈𝜆𝑇

𝑡 a vector characterizing a threading (each element indicates sequence position that starts each segment)

𝑢, 𝑣 amino acid positions in the core template

Searching the Space of Alignments
• higher-order interactions not allowed (only α/β distinction, not interaction between each pair of AAs)

– dynamic programming

• higher-order interactions allowed
– heuristic methods (fast but might not find the optimal alignment)
– exact methods (e.g. branch&bound, which might take exponential time)

Branch and Bound Search

• the general objective function with pairwise interactions is:

 𝑓(𝑡) = ∑ 𝑔1(𝑖, 𝑡𝑖) + ∑ ∑ 𝑔2(𝑖, 𝑗, 𝑡𝑖, 𝑡𝑗)𝑗>𝑖𝑖𝑖

first sum represents the score for individual segments (how well they fit the template)
second sum = scores for segment interactions (how chosen segments interact)

– create subsets so they are easy to compte lower bounds for to speed up

