
Comp2711 S1 2006 Amortized Complexity Example 1'

&

$

%

Amortized Complexity – Main Idea

Worst case analysis of run time complexity is often too pessimistic.

Average case analysis may be difficult because (i) it is not clear what

is “average data”, (ii) uniformly random data is usually not average,

(iii) probabilistic arguments can be difficult.

Amortized complexity analysis is a different way to estimate run

times. The main ideas is to spread out the cost of operations,

charging more than necessary when they are cheap — thereby

“saving up for later use” when they occasionally become expensive.

Comp2711 S1 2006 Amortized Complexity Example 2'

&

$

%

The Accounting Method

We choose a set (typically a singleton, but always a small set) of

elementary operations whose cost can be set to a constant (typically

1, or other small constants).

In running the algorithm some steps make use of just the elementary

operations, others use them in combination — aggregate operations.

We invent an accounting or potential function φ : S → N where S is

the state space of the (data) structure and N is the set of natural

numbers. φ(T) denotes the amount of (cyber) dollars “deposited” or

“saved up” in state T .

Comp2711 S1 2006 Amortized Complexity Example 3'

&

$

%

Costs of Operations

Performing operations cost dollars.

Suppose an operation F maps a state T1 to a state T2. Let its cost be

CostF (T1, T2) dollars. If this is “cheap” we may decide to actually

charge it more than the cost in order to “save up” for more expensive

operations later. If so, we “deposit” the excess in state T2.

The dollar amounts in T1 and T2, i.e, respectively φ(T1) and φ(T2)

may be different. If φ(T1) > φ(T2) then φ(T1) − φ(T2) dollars is

released to help meet the cost CostF (T1, T2). If φ(T1) < φ(T2) there

is a shortfall, then we have to pay for the operation from “external”

funds. Summing payments over many operations is the measure of

complexity.

Comp2711 S1 2006 Amortized Complexity Example 4'

&

$

%

Example: Extendable Arrays — 6.1.5

Think of a queue implemented as an array. We have an array A of

size N . If we fill it up and need more space we create an array B of

size 2 ∗ N . Then we copy the elements of A into the first half of B.

Copying N elements costs N dollars.

If we start with an array of size 1, how do we analyse the

performance of pushes?

An accounting function φ is updated as follows. Let T1 be the state

of a newly doubled array, only the first half of which is filled. T2 is

the next state in which the overflow element is inserted into the first

position of the second half. We charge 3 dollars for this insertion,

paying 1 dollar for the cost of doing it, and save 2 dollars. Formally,

φ(T2) = φ(T1) + 2. This is done for every push into the new second

half.

Comp2711 S1 2006 Amortized Complexity Example 5'

&

$

%
 to pay for this −− we prove there is always enough.

$
$

$
$

$
$

$
$

$
$

Second doubling due to overflow

A B C D E F G H First doubling filled

copy

A B C D E F G H I

$ −− amount "deposited" into account

Operations:
Push −− charge $3 per push. Cost of push = $1.
 Excess $2 is deposited into account.
Double array −− charge $N for copying N elements
 into first half of doubled array. Use account to

Figure 1: Account updating for push ops

Comp2711 S1 2006 Amortized Complexity Example 6'

&

$

%

Amortized complexity of N pushes is O(N)

Overflow occurs when an array A has reached size 2i for i ≥ 0.

To copy its elements into the first half of a new array B of size 2i+1

costs 2i dollars. But from the previous round of insertions into the

second half of array A, we have deposited 2 dollars into the account

function for each such insertion. So the total amount deposited is

2 × 2i−1 = 2i dollars. Hence we have enough to pay for the copying.

Therefore, it suffices to charge exactly 3 dollars for each insertion, i.e.

this is an O(1) operation. Hence for N insertions the amortized

complexity is O(N).

Comp2711 S1 2006 Amortized Complexity Example 7'

&

$

%

Comments on the Textbook Explanations I

The text slides on amortized complexity for splaying are very high

level outlines. Here are a few comments on the details in the

textbook explanation.

The account for a state (tree) is distributed across subaccounts for

nodes, the amount of dollars deposited in each node is equal to its

rank.

In splaying a node x to a new position denoted by x′ you will notice

that some nodes have their account increased and others have theirs

decreased, but most are not changed.

Comp2711 S1 2006 Amortized Complexity Example 8'

&

$

%

Comments on the Textbook Explanations II

So, if there is a net positive change, we the affected nodes can

“donate” dollars to pay for the zig-zig or zig-zag (2 dollars each), or a

zig (1 dollar). If negative, then we pay the difference.

The invariant mentioned means this: each node before and after

splaying can maintain an account (may be less or more than its old

account) according to its new rank. But this is only possible because

we pay to make up any shortfall.

The text goes on to show that this payment is bounded by O(log n)

dollars for an arbitrary splay.

