Rozdíly

Zde můžete vidět rozdíly mezi vybranou verzí a aktuální verzí dané stránky.

Odkaz na výstup diff

courses:be4m33ssu [2018/02/11 00:36]
marcimat [27.1.2017]
courses:be4m33ssu [2025/01/03 18:23] (aktuální)
Řádek 18: Řádek 18:
  
  
-===== Materials ​=====+===== Helpful materials ​===== 
 + 
 +**Literature**
  
-Literature 
 https://​web.stanford.edu/​~hastie/​Papers/​ESLII.pdf https://​web.stanford.edu/​~hastie/​Papers/​ESLII.pdf
-Majority of SSU subjects understandably explained here: 
-http://​www.cs.huji.ac.il/​~shais/​UnderstandingMachineLearning/​understanding-machine-learning-theory-algorithms.pdf 
  
-SVM +Majority of SSU subjects understandably explained here: http://​www.cs.huji.ac.il/​~shais/​UnderstandingMachineLearning/​understanding-machine-learning-theory-algorithms.pdf 
-MIT best :) https://​www.youtube.com/​watch?​v=_PwhiWxHK8o + 
-MIT explains, what is SVM, how it works, how we derive dual optimization equation, fundamental components of SVM. +**SVM** 
-https://​ocw.mit.edu/​courses/​electrical-engineering-and-computer-science/​6-034-artificial-intelligence-fall-2010/​tutorials/​MIT6_034F10_tutor05.pdf+ 
 +Lecture on SVM on MIT https://​www.youtube.com/​watch?​v=_PwhiWxHK8o 
 + 
 +MIT notes: ​https://​ocw.mit.edu/​courses/​electrical-engineering-and-computer-science/​6-034-artificial-intelligence-fall-2010/​tutorials/​MIT6_034F10_tutor05.pdf
  
 https://​www.youtube.com/​watch?​v=IOetFPgsMUc + pokracovanie v part II. a III. https://​www.youtube.com/​watch?​v=IOetFPgsMUc + pokracovanie v part II. a III.
  
-Neural nets + convolutional+**Neural nets + convolutional** 
 https://​www.youtube.com/​watch?​v=vT1JzLTH4G4&​list=PL3FW7Lu3i5JvHM8ljYj-zLfQRF3EO8sYv https://​www.youtube.com/​watch?​v=vT1JzLTH4G4&​list=PL3FW7Lu3i5JvHM8ljYj-zLfQRF3EO8sYv
 Whole course on neural nets and convolutional networks. Very comprehensive lectures, explained from the basic concepts plus nice motivation examples. Whole course on neural nets and convolutional networks. Very comprehensive lectures, explained from the basic concepts plus nice motivation examples.
  
-MLE+**MLE** 
 First what is likely hood? First what is likely hood?
 VYD lecture slides (course on FEL,CTU) VYD lecture slides (course on FEL,CTU)
 https://​www.youtube.com/​watch?​v=2vh98ful3_M https://​www.youtube.com/​watch?​v=2vh98ful3_M
-EM + gaussian mixture 
-MIT notes for same topic. But it is useful to understand MLE first. 
-https://​ocw.mit.edu/​courses/​electrical-engineering-and-computer-science/​6-867-machine-learning-fall-2006/​lecture-notes/​lec15.pdf 
  
-Bayes learning ​ +**EM + gaussian mixture** 
-MIT lecture notes once agian https://​ocw.mit.edu/​courses/​electrical-engineering-and-computer-science/​6-034-artificial-intelligence-fall-2010/tutorials/MIT6_034F10_tutor06.pdf+ 
 +https://​ocw.mit.edu/​courses/​electrical-engineering-and-computer-science/​6-867-machine-learning-fall-2006/lecture-notes/lec15.pdf
  
 +**Bayes learning**
 + 
 +MIT notes: https://​ocw.mit.edu/​courses/​electrical-engineering-and-computer-science/​6-034-artificial-intelligence-fall-2010/​tutorials/​MIT6_034F10_tutor06.pdf
  
  
-GMB+**GMB**
 http://​blog.kaggle.com/​2017/​01/​23/​a-kaggle-master-explains-gradient-boosting/​ http://​blog.kaggle.com/​2017/​01/​23/​a-kaggle-master-explains-gradient-boosting/​
  
  
courses/be4m33ssu.1518305778.txt.gz · Poslední úprava: 2025/01/03 18:16 (upraveno mimo DokuWiki)
Nahoru
chimeric.de = chi`s home Valid CSS Driven by DokuWiki do yourself a favour and use a real browser - get firefox!! Recent changes RSS feed Valid XHTML 1.0