Toto je starší verze dokumentu!
Literature https://web.stanford.edu/~hastie/Papers/ESLII.pdf Majority of SSU subjects understandably explained here: http://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning/understanding-machine-learning-theory-algorithms.pdf
SVM MIT best :) https://www.youtube.com/watch?v=_PwhiWxHK8o MIT explains, what is SVM, how it works, how we derive dual optimization equation, fundamental components of SVM. https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-034-artificial-intelligence-fall-2010/tutorials/MIT6_034F10_tutor05.pdf
https://www.youtube.com/watch?v=IOetFPgsMUc + pokracovanie v part II. a III.
Neural nets + convolutional https://www.youtube.com/watch?v=vT1JzLTH4G4&list=PL3FW7Lu3i5JvHM8ljYj-zLfQRF3EO8sYv Whole course on neural nets and convolutional networks. Very comprehensive lectures, explained from the basic concepts plus nice motivation examples.
MLE First what is likely hood? VYD lecture slides (course on FEL,CTU) https://www.youtube.com/watch?v=2vh98ful3_M EM + gaussian mixture MIT notes for same topic. But it is useful to understand MLE first. https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-867-machine-learning-fall-2006/lecture-notes/lec15.pdf
Bayes learning MIT lecture notes once agian https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-034-artificial-intelligence-fall-2010/tutorials/MIT6_034F10_tutor06.pdf
GMB http://blog.kaggle.com/2017/01/23/a-kaggle-master-explains-gradient-boosting/